Skip to main content
Log in

The Role of Binary and Many-center Molecular Interactions in Spin Crossover in the Solid State. Part III. Expressing Many-body Interactions

  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary.

The approach of molecular potentials describing the shape of transition curves of spin crossover in the solid state developed earlier has been extended to many-body interactions characterized by the Axilrod-Teller potential. An improved procedure for the minimization of energy developed for this case is presented. Calculations for systems involving Lennard-Jones, electric dipole–dipole, and dispersive Axilrod-Teller triple interactions yield non-zero asymmetries of splittings in expanded/compressed systems alone. The excess energy is unaffected by the Axilrod-Teller potential. Triple interactions of the Axilrod-Teller type thus increase the sensitivity of a transition curve towards compression.

Another approach presented employs the deviations of molecules from positions of mechanical equilibrium set up by the known binary potential. In the approximation of small perturbations these deviations are proportional to the gradients of many-center potentials. This allows one to parametrically define non-ideality parameters as functions of gradients of triple potentials of unknown types. Employing regularization bounds an adequate parameterization of experimental transition curve of spin crossover has been achieved in terms of parameters of Lennard-Jones potential and relative deviations of molecules from the position of mechanical equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Jansen L (1965) ‘Many-centre forces and stability of crystals’. In: Sinanoglu O (ed.) ‘Modern Quantum Chemistry (Istanbul Lectures)’: Academic Press, New York

  • VI Zubov (2002) Phys St Solidi 253 151

    Google Scholar 

  • RJ Sadus (1998) Fluid Phase Equil 150–151 63

    Google Scholar 

  • KP Shukla (1989) Fluid Phase Equil 46 1 Occurrence Handle10.1016/0378-3812(89)80271-7 Occurrence Handle1:CAS:528:DyaL1MXltVehurw%3D

    Article  CAS  Google Scholar 

  • AB Koudriavtsev (1999) Chem Phys 241 109 Occurrence Handle10.1016/S0301-0104(98)00405-4 Occurrence Handle1:CAS:528:DyaK1MXlvValtQ%3D%3D

    Article  CAS  Google Scholar 

  • AB Koudriavtsev AF Stassen JG Haasnoot M Grunert P Weinberger W Linert (2003) Phys Chem Chem Phys 5 3666 Occurrence Handle1:CAS:528:DC%2BD3sXmsVShu74%3D

    CAS  Google Scholar 

  • AB Koudriavtsev AF Stassen JG Haasnoot M Grunert P Weinberger W Linert (2003) Phys Chem Chem Phys 5 3676 Occurrence Handle1:CAS:528:DC%2BD3sXmsVShu7w%3D

    CAS  Google Scholar 

  • AB Koudriavtsev W Linert (2005) Monatsh Chem 137 15

    Google Scholar 

  • AB Koudriavtsev W Linert (2005) Monatsh Chem 137 35

    Google Scholar 

  • HA Goodwin (1976) Coord Chem Reviews 18 293 Occurrence Handle1:CAS:528:DyaE28Xktlyksb0%3D

    CAS  Google Scholar 

  • M Sorai J Ensling KM Hasselbach P Gütlich (1977) Chem Phys 20 197 Occurrence Handle10.1016/0301-0104(77)85023-4 Occurrence Handle1:CAS:528:DyaE2sXhs1ehsbg%3D

    Article  CAS  Google Scholar 

  • H Köppen EW Müller CP Köhler H Spiering E Meissner P Gütlich (1982) Chem Phys Lett 91 348 Occurrence Handle10.1016/0009-2614(82)83298-3

    Article  Google Scholar 

  • BM Axilrod E Teller (1943) J Chem Phys 11 299 Occurrence Handle10.1063/1.1723844 Occurrence Handle1:CAS:528:DyaH3sXjtlShsA%3D%3D

    Article  CAS  Google Scholar 

  • Moelwyn-Hughes EA (1970) ‘Physikalische Chemie’, Georg Thieme Verlag, Stuttgart

  • Hückel W (1954) ‘Theoretische Grundlagen der Organischen Chemie’ Bd. 2, Leipzig

  • A Bousseksou J Nasser J Linares K Boukheddaden F Varret (1992) J Phys I France 2 1381 Occurrence Handle10.1051/jp1:1992217 Occurrence Handle1:CAS:528:DyaK38Xlt1eis7o%3D

    Article  CAS  Google Scholar 

  • M Sorai (2001) Bull Chem Soc Jap 74 2223 Occurrence Handle1:CAS:528:DC%2BD38XjtlGjug%3D%3D

    CAS  Google Scholar 

  • D Chernyshov M Hostettler KW Törnroos H-B Bürgi (2003) Angew Chem Int Ed 42 3825 Occurrence Handle10.1002/anie.200351834 Occurrence Handle1:CAS:528:DC%2BD3sXntV2ltr4%3D

    Article  CAS  Google Scholar 

  • Kudriavtsev AB, Linert W (1996) Physico-Chemical Applications of NMR. WSPC, Singapore

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Linert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koudriavtsev, A., Linert, W. The Role of Binary and Many-center Molecular Interactions in Spin Crossover in the Solid State. Part III. Expressing Many-body Interactions. Monatsh. Chem. 137, 433–447 (2006). https://doi.org/10.1007/s00706-005-0454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-005-0454-0

Navigation