Skip to main content

Advertisement

Log in

Study on the Kinetics of Non-isothermal Dehydration of Alkaline Earth Metal Selenites

  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary.

The dehydration kinetics of crystallohydrates of beryllium, magnesium and calcium selenites were studied under non-isothermal conditions. The values of the activation energy of dehydration, the pre-exponential factor in Arrhenius equation and the change of entropy for the formation of the activated complex were calculated using the calculation procedure of Coats and Redfern. Thermal stability and activation energy of dehydration of the crystallohydrates were found to increase by the same order. The relationships observed were interpreted using Klopman’s generalized perturbation theory of chemical reactivity. The same theory was applied to explain the differences in the IR spectra of the selenite crystallohydrates studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • LYa Markovskii RI Smirnov (1959) Izv AN SSSR, Ser Fiz 23 1241

    Google Scholar 

  • IV Tananaev AN Volodina NK Bolshakov KI Petrov (1976) Inorg Mater 12 2212

    Google Scholar 

  • R Boling (1989) American Forest 31 326

    Google Scholar 

  • US Patent No 5340603 (1993)

  • ZG Pikh II Kosmina VYa Samarik AA Sheredko (1991) Neftekhimiya 31 322

    Google Scholar 

  • O Funkoshi (1935) Bull Chem Soc Japan 10 359

    Google Scholar 

  • NA Filippova LA Martynova EV Savina (1960) Zav Lab 26 401

    Google Scholar 

  • YuP Sapozhnikov LYa Markovskii (1964) Zh Neorg Khim 9 849

    Google Scholar 

  • GS Savchenko IV Tananaev AN Volodina (1968) Inorg Mater 4 369

    Google Scholar 

  • Kudryavzev AA (1961) Khimiya i teknologiya selena i tellura. Vyshaya shkola, Moskva

  • JA Mandarino (1994) Eur J Mineral 6 337

    Google Scholar 

  • B Simmingskold BR Johnson (1954) Glas Tehn 9 131

    Google Scholar 

  • LaKourse WC (1995) Inst Rev Glass Prod Manuf Technol, London, p 23

  • AP Gulya SG Chova VF Rudik VI Biyushkin BM Antosya (1994) Koord Khim 20 368

    Google Scholar 

  • IV Yanizkii SS Staschene (1985) Zh Neorg Khim 30 IssueID8 2949

    Google Scholar 

  • U Bäumer K Boldt B Engelen H Müller K Unterderweide (1999) Z Anorg Allg Chem 625 395 Occurrence Handle10.1002/(SICI)1521-3749(199903)625:3<395::AID-ZAAC395>3.3.CO;2-C

    Article  Google Scholar 

  • MI Beresina VV Pachkovskii GF Pinaev (1972) Zh Neorg Khim 17 1795

    Google Scholar 

  • FL Nilson (1874) Bull Soc Chim Fr 21 253

    Google Scholar 

  • ZI Leshchiskaya NM Selivanova (1966) Zh Neorg Khim 11 260

    Google Scholar 

  • GV Chukhlantsev (1956) Zh Neorg Khim 1 2300

    Google Scholar 

  • R Weiss (1966) Acta Crystallogr 20 533

    Google Scholar 

  • A Simon R Paetzold (1960) Z Anorg Allg Chem 303 39 Occurrence Handle10.1002/zaac.19603030106

    Article  Google Scholar 

  • R Paetzold A Simon (1959) Z Anorg Allg Chem 301 246 Occurrence Handle10.1002/zaac.19593010503

    Article  Google Scholar 

  • A Simon R Paetzold (1960) Z Elektrochem Ber Bunsenges Phys Chem 64 209

    Google Scholar 

  • CC Rocchiccioli (1958) C R Acad Sci (Paris) 247 1108

    Google Scholar 

  • JJ Berzelius (1819) Ann Miner 4 301

    Google Scholar 

  • JS Muspratt (1849) J Chem Soc 2 52

    Google Scholar 

  • B Boutzoureano (1889) Ann Chem Phys 18 309

    Google Scholar 

  • OJ Lieder G Gattow (1967) Naturwissenschaften 34 443 Occurrence Handle10.1007/BF00603149

    Article  Google Scholar 

  • S Stashene I Vanisku (1968) Zh Neorg Khim 31 602

    Google Scholar 

  • M Ebert D Havelicek (1980) Chem Zvesti 34 441

    Google Scholar 

  • V Lenher EJ Wechter (1925) J Amer Chem Soc 47 1253

    Google Scholar 

  • M Ebert D Havelicek (1981) Coll Czech Chem Comm 46 1740

    Google Scholar 

  • JJ Berzelius (1818) Ann Chim Phys 9 225

    Google Scholar 

  • ZI Leshchiskaya NM Selivanova (1965) Zh Fiz Khim 39 2036

    Google Scholar 

  • L Neal CR McCrosky (1938) J Amer Chem Soc 60 911 Occurrence Handle10.1021/ja01271a043

    Article  Google Scholar 

  • VP Verma (1999) Thermochim Acta 327 63 Occurrence Handle10.1016/S0040-6031(98)00577-2

    Article  Google Scholar 

  • Prschibil R (1960) Complecsonii v himicheskom analize. Inostrannaya literature, Moscow

  • Nazarenko II, Ermakov EI (1977) Analiticheskaia Khimia Selena i Tellura. Nauka, Moscow, pp 5, 59

  • JJM Orfao FG Martins (2002) Thermochim Acta 390 195 Occurrence Handle10.1016/S0040-6031(02)00133-8

    Article  Google Scholar 

  • J Šestak G Berggen (1971) Thermochim Acta 3 1 Occurrence Handle10.1016/0040-6031(71)85051-7

    Article  Google Scholar 

  • V Mamleev S Bourbigot M LeBras S Duquesne J Šestak (2000) Phys Chem Chem Phys 2 4708 Occurrence Handle10.1039/b004355i

    Article  Google Scholar 

  • Albano CL, Sciamanna R, Aquino T, Martinez J (2000) European Congress on Computational Methods in Applied Sciences and Engineering. Barcelona, September 2000

  • AW Coats FG Redfern (1964) Nature (London) 201 68

    Google Scholar 

  • KR Agrawal (1986) J Thermal Anal 31 73 Occurrence Handle10.1007/BF01913888

    Article  Google Scholar 

  • Gerasimov Ya, Dreving V, Eremin E, Kiselev A, Lebedev V, Panchenkov G, Shlygin A (1974) Physical Chemistry, vol. 2. Mir, Moscow

  • AM Urzhenko AV Usherov-Marshak (1974) Neorg Mater 10 888

    Google Scholar 

  • Nikolaev AV, Logvinenko VA, Gorbatchov VM, Myachina LI (1974) Thermal Analysis. Proceedings forth ICTA Budapest (ed. by I. Buzas), vol 1, p 47

  • Zmijewski T, Pysiak J (1974) Thermal Analysis, Proceedings forth ICTA Budapest (ed. by I. Buzas) vol 1, p 205

  • N Koga H Tanaka (1988) J Thermal Anal 34 177 Occurrence Handle10.1007/BF01913383

    Article  Google Scholar 

  • SV Vyazovkin AJ Lesnikovich IS Romanovsky (1988) J Thermal Anal 34 609 Occurrence Handle10.1007/BF01913390

    Article  Google Scholar 

  • H Tanaka N Koga (1988) J Thermal Anal 34 685

    Google Scholar 

  • Klopman G (1974) Chemical Reactivity and Reaction Parts. Wiley, New York

  • VP Verma A Khushu (1989) J Thermal Anal 35 1989 Occurrence Handle10.1007/BF01913033

    Article  Google Scholar 

  • G Engel KG Hertz (1968) Ber Bunsenges Phys Chem 72 808

    Google Scholar 

  • Bamford CH, Tipper CFH (1980) Comprehensive Chemical Kinetics, vol 22. Elsevier, Amsterdam

  • LT Vlaev MM Nikolova GG Gospodinov (2004) J Solid State Chem 177 2663 Occurrence Handle10.1016/j.jssc.2004.04.036

    Article  Google Scholar 

  • B L’vov V Ugolkov (2004) Thermochim Acta 413 7 Occurrence Handle10.1016/j.tca.2003.11.008

    Article  Google Scholar 

  • LT Vlaev IG Markovska LA Lyubchev (2004) Oxidation Comm 27 444

    Google Scholar 

  • VN Makatun R Ya Melnikova VV Pechkovskii MF Afanasev (1973) Dokl AN SSSR 213 353

    Google Scholar 

  • Ya R Melnikova VN Makatun VV Pechkovskii (1974) Zh Neorg Khim 19 1864

    Google Scholar 

  • M Ebert Z Micka I Pekova (1982) Chem Zvesti 30 169

    Google Scholar 

  • M Ebert Z Micka I Pekova (1982) Coll Czech Chem Comm 74 2069

    Google Scholar 

  • GG Gospodinov LM Sukova KI Petrov (1988) Zh Neorg Khim 33 1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyubomir T. Vlaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlaev, L., Nikolova, M. & Gospodinov, G. Study on the Kinetics of Non-isothermal Dehydration of Alkaline Earth Metal Selenites. Monatsh. Chem. 136, 1553–1566 (2005). https://doi.org/10.1007/s00706-005-0352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-005-0352-5

Navigation