Skip to main content

Advertisement

Log in

Role of angiotensin II in cellular entry and replication of dengue virus

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated the relevance of several soluble molecules in the pathogenesis of dengue. In this regard, a possible role for angiotensin II (Ang II) in the pathophysiology of dengue has been suggested by the observation of a blockade of Ang II in patients with dengue, increased expression of molecules related to Ang II production in the plasma of dengue patients, increased expression of circulating cytokines and soluble molecules related to the action of Ang II, and an apparent relationship between DENV, Ang II effects, and miRNAs. In addition, in ex vivo experiments, the blockade of Ang II AT1 receptor and ACE-1 (angiotensin converting enzyme 1), both of which are involved in Ang II production and its function, inhibits infection of macrophages by DENV, suggesting a role of Ang II in viral entry or in intracellular viral replication of the virus. Here, we discuss the possible mechanisms of Ang II in the entry and replication of DENV. Ang II has the functions of increasing the expression of DENV entry receptors, creation of clathrin-coated vesicles, and increasing phagocytosis, all of which are involved in DENV entry. This hormone also modulates the expression of the Rab5 and Rab7 proteins, which are important in the endosomal processing of DENV during viral replication. This review summarizes the data related to the possible involvement of Ang II in the entry of DENV into cells and its replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI (2012) Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6:e1760. https://doi.org/10.1371/journal.pntd.0001760

    Article  PubMed  PubMed Central  Google Scholar 

  2. Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, Bhatt S, Katzelnick L, Howes RE, Battle KE, Simmons CP, Hay SI (2014) Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol 22:138–146. https://doi.org/10.1016/j.tim.2013.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Recker M, Vannice K, Hombach J, Jit M, Simmons CP (2016) Assessing dengue vaccination impact: Model challenges and future directions. Vaccine 34:4461–4465. https://doi.org/10.1016/j.vaccine.2016.06.082

    Article  PubMed  Google Scholar 

  4. Screaton G, Mongkolsapaya J, Yacoub S, Roberts C (2015) New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol 15:745–759. https://doi.org/10.1038/nri3916

    Article  CAS  PubMed  Google Scholar 

  5. Halstead SB, Nimmannitya S, Cohen SN (1970) Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med 42:311–328

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Littaua R, Kurane I, Ennis FA (1990) Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. J Immunol 144:3183–3186

    Article  CAS  PubMed  Google Scholar 

  7. Kontny U, Kurane I, Ennis FA (1988) Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells. J Virol 62:3928–3933. https://doi.org/10.1128/JVI.62.11.3928-3933.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nanaware N, Banerjee A, Mullick Bagchi S, BagchiP, Mukherjee A (2021) Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses. Viruses 13: 1967. https://doi.org/10.3390/v13101967

  9. Dalrymple N, Mackow ER (2011) Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J Virol 85:9478–9485. https://doi.org/10.1128/JVI.05008-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cruz-Oliveira C, Freire JM, Conceição TM, Higa LM, Castanho M, Da Poian AT (2015) Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev 39:155–170. https://doi.org/10.1093/femsre/fuu004

    Article  CAS  PubMed  Google Scholar 

  11. Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13–22. https://doi.org/10.1038/nrmicro1067

    Article  CAS  PubMed  Google Scholar 

  12. Martina BE, Koraka P, Osterhaus AD (2009) Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22:564–581. https://doi.org/10.11128/CMR.00035-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mosquera-Sulbaran JA, Pedreañez A, Hernandez-Fonseca JP, Hernandez-Fonseca H (2023) Angiotensin II and dengue. Arch Virol 168:191. https://doi.org/10.1007/s00705-023-05814-6

    Article  CAS  PubMed  Google Scholar 

  14. Hunyady L, Catt KJ (2006) Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol 20:953–970. https://doi.org/10.1210/me.2004-0536

    Article  CAS  PubMed  Google Scholar 

  15. Dandona P, Dhindsa S, Ghanim H, Chaudhuri A (2007) Angiotensin II and Inflammation: The Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockade. J Hum Hypertens 21:20–27. https://doi.org/10.1038/sj.jhh.1002101

    Article  CAS  PubMed  Google Scholar 

  16. Hernández-Fonseca JP, Durán A, Valero N, Mosquera J (2015) Losartan and enalapril decrease viral absorption and interleukin 1 beta production by macrophages in an experimental dengue virus infection. Arch Virol 160:2861–2865. https://doi.org/10.1007/s00705-015-2581-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251

    CAS  PubMed  Google Scholar 

  18. Van Kats JP, Danser AH, van Meegen JR, Sassen LM, Verdouw PD, Schalekamp MA (1998) Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusion. Circulation 98:73–81. https://doi.org/10.1161/01. cir.98.1.73

    Article  PubMed  Google Scholar 

  19. Kobori H, Pieto-Carrasquero MC, Ozawa Y, Navar LG (2004) AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin II dependent hypertension. Hypertension 43:1126–1132. https://doi.org/10.1161/01.HYP.0000122875.91100.28

    Article  CAS  PubMed  Google Scholar 

  20. Moulik S, Speth RC, Turner BB, Rowe BP (2002) Angiotensin II receptor subtype distribution in the rabbit brain. Exp Brain Res 142:275–283. https://doi.org/10.1007/s00221-001-0940-5

    Article  CAS  PubMed  Google Scholar 

  21. Ghiani BU, Masini MA (1995) Angiotensin II bindings sites in the rat pancreas and their modulation after sodium loading and depletion. Comp Biochem Physiol Physiol 111:439–444. https://doi.org/10.1016/0300-9629(95)00030-b

    Article  CAS  Google Scholar 

  22. Karlsson C, Lindell K, Ottosson M, Sjostrom L, Carlsson B, Carlsso L (1998) Human Adipose Tissue Expresses Angiotensinogen and Enzymes Required for Its Conversion to Angiotensin II. J Clin Endocrinol Metabol 83:3925–3929. https://doi.org/10.1210/jcem.83.11.5276

    Article  CAS  Google Scholar 

  23. de Mello W (2003) Effect of extracellular and intracellular angiotensin on heart cell function; on the cardiac renin-angiotensin system. Regul Pept 114:87–90. https://doi.org/10.1016/s0167-0115(03)00121-6

    Article  PubMed  Google Scholar 

  24. Re RN, Cook JL (2006) The intracrine hypothesis: an update. Regul Pept 133:1–9. https://doi.org/10.1016/j.regpep.2005.09.012

    Article  CAS  PubMed  Google Scholar 

  25. Rüster C, Wolf G (2013) The role of the renin-angiotensin-aldosterone system in obesity-related renal diseases. Semin Nephrol 33:44–53. https://doi.org/10.1016/j.semnephrol.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  26. Ruster C, Wolf G (2006) Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol 17:2985–2991. https://doi.org/10.1681/ASN.2006040356

    Article  CAS  PubMed  Google Scholar 

  27. Porrello ER, Delbridge LM, Thomas WG (2009) The angiotensin II type 2 (AT2) receptor: an enigmatic seven transmembrane receptor. Front BioSci 14:958–972. https://doi.org/10.2741/3289

    Article  CAS  Google Scholar 

  28. Schulman IH, Raij L (2008) The angiotensin II type 2 receptor: what is its clinical significance? Curr Hypertens Rep 10:188–193. https://doi.org/10.1007/s11906-008-0036-8

    Article  CAS  PubMed  Google Scholar 

  29. Marchesi C, Paradis P, Schiffrin EL (2008) Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol Sci 29:367–374. https://doi.org/10.1016/j.tips.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  30. Chua CC, Hamdy RC, Chua BH (1998) Upregulation of vascular endothelial growth factor by angiotensin II in rat heart endothelial cells. Biochim Biophys Acta 1401:187–194. https://doi.org/10.1016/s0167-4889(97)00129-8

    Article  CAS  PubMed  Google Scholar 

  31. Kitayama H, Maeshima Y, Takazawa Y, Yamamoto Y, Wu Y, Ichinose K, Hirokoshi K, Sugiyama H, Yamasaki Y, Makino H (2006) Regulation of angiogenic factors in angiotensin II infusion model in association with tubulointerstitial injuries. Am J Hypertens 19:718–727. https://doi.org/10.1016/j.amjhyper.2005.09.022

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J (2003) Inflammation and angiotensin II. Int J Biochem Cell Biol 35:881–900. https://doi.org/10.1016/s1357-2725(02)00271-6

    Article  CAS  PubMed  Google Scholar 

  33. Alvarez A, Cerda-Nicolas M, Abu N, Nabah Y, Mata M, Issekutz AC, Panés J, Lobb RR, Sanz MJ (2004) Direct evidence of leukocyte adhesion in arterioles by angiotensin II. Blood 104:402–408. https://doi.org/10.1182/blood-2003-08-2974

    Article  CAS  PubMed  Google Scholar 

  34. Piqueras L, Kubes P, Alvarez A, O’Connor E, Issekutz AC, Esplugues JV, Sanz MJ (2000) Angiotensin II induces leukocyte-endothelial cell interactions in vivo via AT(1) and AT(2) receptor-mediated P-selectin upregulation. Circulation 102:2118–2123. https://doi.org/10.1161/01.cir.102.17.2118

    Article  CAS  PubMed  Google Scholar 

  35. Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB (2000) Angiotensin stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation inducedby intracellular oxidative stress. Artherocler Thromb Vasc Biol 20:645–651. https://doi.org/10.1161/01.atv.20.3.645

    Article  CAS  Google Scholar 

  36. Crowley SD, Frey CW, Gould SK, Griffiths R, Ruiz P, Burchette JL, Howell DN, Makhanova N, Yan M, Kim HS, Tharaux PL, Coffman TM (2008) Stimulation of lymphocyte responses by angiotensin II promotes kidney injury in hypertension. Am J Physiol Ren Physiol 295:F515–F524. https://doi.org/10.1152/ajprenal.00527.2007

    Article  CAS  Google Scholar 

  37. Jurewicz M, McDermott DH, Sechler JM, Tinckam K, Takakura A, Carpenter CB, Milford E, Abdi R (2007) Human T and natural killer cells possess a functional renin-angiotensin system: further mechanisms of angiotensin II induced inflammation. J Am Soc Nephrol 18:1093–10102. https://doi.org/10.1681/ASN.2006070707

    Article  CAS  PubMed  Google Scholar 

  38. Kvakan H, Kleinewietfeld M, Qadri F, Park JK, Fischer R, Schwarz I, Rahn HP, Plehm R, Wellner M, Elitok S, Gratze P, Luft R, Muller FCDN (2009) Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation 119:2904–2912. https://doi.org/10.1161/CIRCULATIONAHA.108.832782

    Article  CAS  PubMed  Google Scholar 

  39. Welch WJ (2008) Angiotensin II-dependent superoxide: effects on hypertension and vascular dysfunction. Hypertension 52:51–56. https://doi.org/10.1161/HYPERTENSIONAHA.107.090472

    Article  CAS  PubMed  Google Scholar 

  40. Wu R, Laplante MA, de Champlain J (2005) Cyclooxygenase-2 inhibitors attenuate angiotensin II-induced oxidative stress, hypertension, and cardiac hypertrophy in rats. Hypertension 45:1139–1144. https://doi.org/10.1161/01.HYP.0000164572.92049.29

    Article  CAS  PubMed  Google Scholar 

  41. Wen Y, Liu Y, Tang T, Lv L, Liu H, Ma K, Liu B (2016) NLRP3 inflammasome activation is involved in Ang II-induced kidney damage via mitochondrial dysfunction. Oncotarget 7:54290–54302. https://doi.org/10.18632/oncotarget.11091

    Article  PubMed  PubMed Central  Google Scholar 

  42. Thakur S, Li L, Gupta S (2014) NF-κB-mediated integrin-linked kinase regulation in angiotensin II-induced pro-fibrotic process in cardiac fibroblasts. Life Sci 107:68–75. https://doi.org/10.1016/j. lfs.2014.04.030

    Article  CAS  PubMed  Google Scholar 

  43. Weber KT, Swamynathan SK, Guntaka RV, Sun Y (1999) Angiotensin II and Extracellular Matrix Homeostasis. J Biochem Cell Biol 31:395–403. https://doi.org/10.1016/s1357-2725(98)00125-3

    Article  CAS  Google Scholar 

  44. Than A, Leow MK, Chen P (2013) Control of adipogenesis by the autocrine interplays between angiotensin 1–7/Mas receptor and angiotensin II/AT1 receptor signaling pathways. J Biol Chem 288:15520–15531. https://doi.org/10.1074/jbc.M113.459792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chalmers L, Kaskel FJ, Bamgbola O (2006) The role of obesity and its bioclinical correlates in the progression of chronic kidney disease. Adv Chronic Kidney Dis 13:352–364. https://doi.org/10.1053/j.ackd.2006.07.010

    Article  PubMed  Google Scholar 

  46. Gao N, Wang H, Zhang X, Yang Z (2015) The inhibitory effect of angiotensin II on BKCa channels in podocytes via oxidative stress. Mol Cell Biochem 398:217–222. https://doi.org/10.1007/s11010-014-2221-1

    Article  CAS  PubMed  Google Scholar 

  47. Hongo M, Ishizaka N, Furuta K, Yahagi N, Saito K, Sakurai R, Matsuzaki G, Koike K, Nagai R (2009) Administration of angiotensin II, but not catecholamines, induces accumulation of lipids in the rat heart. Eur J Pharmacol 604:87–92. https://doi.org/10.1016/j.ejphar.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  48. Glenn DJ, Cardema MC, Ni W, Zhang Y, Yeghiazarians Y, Grapov D, Fiehn O, Gardner DG (2015) Cardiac steatosis potentiates angiotensin II effects in the heart. Am J Physiol Heart Circ Physiol 308:H339–350. https://doi.org/10.1152/ajpheart.00742.2014

    Article  CAS  PubMed  Google Scholar 

  49. Mayor F Jr, Cruces-Sande M, Arcones AC, Vila-Bedmar R, Briones AM, Salaices M, Murga C (2018) G protein-coupled receptor kinase 2 (GRK2) as an integrative signalling node in the regulation of cardiovascular function and metabolic homeostasis. Cell Signal 41:25–32. https://doi.org/10.1016/j.cellsig.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  50. Kintscher U, Lyon CJ, Law RE (2004) Angiotensin II, PPAR-gamma and atherosclerosis. Front Biosci 9:359–369. https://doi.org/10.2741/1225

    Article  CAS  PubMed  Google Scholar 

  51. Kochueva M, Sukhonos V, Shalimova A, Psareva V, Kirichenko N (2014) State of integral remodeling parameters of target organs in patients with essential hypertension and obesity. Georgian Med News 231:26–30

    Google Scholar 

  52. Frohlich ED (2002) Clinical management of the obese hypertensive patient. Cardiol Rev 10:127–138. https://doi.org/10.1097/00045415-200205000-00001

    Article  PubMed  Google Scholar 

  53. Rajagopalan S, Laursen JB, Borthayre A, Kurz S, Keiser J, Haleen S, Giaid A, Harrison DG (1997) Role for endothelin-1 in angiotensin II-mediated hypertension. Hypertension 30:29–34. https://doi.org/10.1161/01.hyp.30.1.29

    Article  CAS  PubMed  Google Scholar 

  54. Lin YJ, Kwok CF, Juan CC, Hsu YP, Shih KC, Chen CC, Ho LT (2014) Angiotensin II enhances endothelin-1-induced vasoconstriction through upregulating endothelin type A receptor. Biochem Biophys Res Commun 451:263–269. https://doi.org/10.1016/j.bbrc.2014.07.119

    Article  CAS  PubMed  Google Scholar 

  55. Xue B, Yu Y, Zhang Z, Guo F, Beltz TG, Thunhorst RL, Felder RB, Johnson AK (2016) Leptin Mediates High-Fat Diet Sensitization of Angiotensin II-Elicited Hypertension by Upregulating the Brain Renin-Angiotensin System and Inflammation. Hypertension 67:970–976. https://doi.org/10.1161/HYPERTENSIONAHA.115.06736

    Article  CAS  PubMed  Google Scholar 

  56. Deji N, Kume S, Araki S, Isshiki K, Araki H, Chin-Kanasaki M, Tanaka Y, Nishiyama A, Koya D, Haneda M, Kashiwagi A, Maegawa H, Uzu T (2012) Role of angiotensin II-mediated AMPK inactivation on obesity-related salt-sensitive hypertension. Biochem Biophys Res Commun 418:559–564. https://doi.org/10.1016/j.bbrc.2012.01.070

    Article  CAS  PubMed  Google Scholar 

  57. Mutch NJ, Wilson HM, Booth NA (2001) Plasminogen Activator inhibitor-1 and Haemostasis in Obesity. Proc Nutr Soc 6:341–347. https://doi.org/10.1079/pns200199

    Article  Google Scholar 

  58. Skurk T, Lee YM, Hauner H (2001) Angiotensin II and its metabolites stimulate PAI-1 protein release from human adipocytes in primary culture. Hypertension 37:1336–1340. https://doi.org/10.1161/01.hyp.37.5.1336

    Article  CAS  PubMed  Google Scholar 

  59. Mikolajczyk TP, Guzik TJ (2019) Adaptive Immunity in Hypertension. Curr Hypertens Rep 21:68. https://

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bernstein KE, Khan Z, Giani JF, Cao DY, Bernstein EA, Shen XZ (2018) Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol 14:325–336. https://doi.org/10.1038/nrneph.2018.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pan XX, Wu F, Chen XH, Chen DR, Chen HJ, Kong LR, Ruan CC, Gao PJ (2021) T-cell senescence accelerates angiotensin II-induced target organ damage. Cardiovasc Res 17:271–283. https://doi.org/10.1093/cvr/cvaa032

    Article  CAS  Google Scholar 

  62. Ferguson JF, Aden LA, Barbaro NR, Van Beusecum JP, Xiao L, Simmons AJ, Warden C, Pasic L, Himmel LE, Washington MK, Revetta FL, Zhao S, Kumaresan S, Scholz MB, Tang Z, Chen G, Reilly MP, Kirabo A (2019) High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension. JCI Insight 13:e126241. https://doi.org/10.1172/jci.insight.126241

    Article  Google Scholar 

  63. Medzhitov R (2009) Approaching the Asymptote: 20 Years Later. Immunity 30:766–775. https://doi.org/10.1016/j.immuni.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  64. Chu L-W, Yang C-J, Peng K-J, Chen P-L, Wang S-J, Ping Y-H (2019) TIM-1 As a Signal Receptor Triggers Dengue Virus-Induced Autophagy. Int J Mol Sci 20:4893. https://doi.org/10.3390/ijms20194893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Urcuqui-Inchima S, Patiño C, Torres S, Haenni A-L, Díaz FJ (2010) Recent Developments in Understanding Dengue Virus Replication. Adv Virus Res 77:1–39. https://doi.org/10.1016/B978-0-12-385034-8.00001-6

    Article  CAS  PubMed  Google Scholar 

  66. 66, Begum F, Das S, Mukherjee D, Ray U (2019) Hijacking the Host Immune Cells by Dengue Virus: Molecular Interplay of Receptors and Dengue Virus Envelope. Microorganisms 7:323. https://doi.org/10.3390/microorganisms7090323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dejarnac O, Hafirassou ML, Chazal M, Versapuech M, Gaillard J, Perera-Lecoin M, Umana-Diaz C, Bonnet-Madin L, Carnec X, Tinevez JY, Delaugerre C, Schwartz O, Roingeard P, Jouvenet N, Berlioz-Torrent C, Meertens L, Amara A (2018) TIM-1 Ubiquitination Mediates Dengue Virus Entry. Cell Rep 23:1779–1793. https://doi.org/10.1016/j.celrep.2018.04.013

    Article  CAS  PubMed  Google Scholar 

  68. Kossmann S, Hu H, Steven S, Schonfelder T, Fraccarollo D, Mikhed Y, Brahler M, Knorr M, Brandt M, Karbach SH, Becker C, Oelze M, Bauersachs J, Widder J, Munzel T, Daiber A, Wenzel P (2014) Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II. J Biol Chem 289:27540–27550. https://doi.org/10.1074/jbc.M114.604231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rucker AJ, Crowley SD (2017) The role of macrophages in hypertension and its complications. Pflugers Arch 469:419–430. https://doi.org/10.1007/s00424-017-1950-x

    Article  CAS  PubMed Central  Google Scholar 

  70. Hermansson C, Lundqvist A, Magnusson LU, Ullström C, Bergström G, Hultén LM (2014) Macrophage CD14 expression in human carotid plaques is associated with complicated lesions, correlates with thrombosis, and is reduced by angiotensin receptor blocker treatment. Int Immunopharmacol 22:318–323. https://doi.org/10.1016/j.intimp.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  71. Gelinas L, Falkenham A, Oxner A, Sopel M, Légaré J-F (2011) Highly purified human peripheral blood monocytes produce IL-6 but not TNFalpha in response to angiotensin II. J Renin Angiotensin Aldosterone Syst 12:295–303. https://doi.org/10.1177/1470320310391332

    Article  CAS  PubMed  Google Scholar 

  72. Sun P, Zhang W, Zhu W, Yan H, Zhu J (2009) Expression of renin-angiotensin system on dendritic cells of patients with coronary artery disease. Inflammation 32:347–356. https://doi.org/10.1007/s10753-009-9141-3

    Article  CAS  PubMed  Google Scholar 

  73. Pokidysheva E, Zhang Y, Battisti AJ, Bator-Kelly CM, Chipman PR, Xiao C, Gregorio GG, Hendrickson WA, Kuhn RJ, Rossmann MG (2006) Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124:485–493. https://doi.org/10.1016/j.cell.2005.11.042

    Article  CAS  PubMed  Google Scholar 

  74. Beirag N, Kumar C, Madan T, Shamji MH, Bulla R, Mitchell D, Murugaiah V, Neto MM, Temperton N, Idicula-Thomas S, Varghese PM, Kishore U (2022) Human surfactant protein D facilitates SARS-CoV-2 pseudotype binding and entry in DC-SIGN expressing cells, and downregulates spike protein induced inflammation. Front Immunol 13:960733. https://doi.org/10.3389/fimmu.2022.960733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR (2002) DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16:135–144. https://doi.org/10.1016/s1074-7613(02)00259-5

    Article  CAS  PubMed  Google Scholar 

  76. Bi X, Niu J, Ding W, Zhang M, Yang M, Gu Y (2016) Angiopoietin-1 attenuates angiotensin II-induced ER stress in glomerular endothelial cells via a Tie2 receptor/ERK1/2-p38 MAPK-dependent mechanism. Mol Cell Endocrinol 428:118–132. https://doi.org/10.1016/j.mce.2016.03.027

    Article  CAS  PubMed  Google Scholar 

  77. Menikdiwela KR, Ramalingam L, Allen L, Scoggin S, Kalupahana NS, Moustaid-Moussa N (2019) Angiotensin II Increases Endoplasmic Reticulum Stress in Adipose Tissue and Adipocytes. Sci RepJun 9:8481. https://doi.org/10.1038/s41598-019-44834-8

    Article  CAS  Google Scholar 

  78. Young CN, Davisson RL (2015) Angiotensin-II, the brain, and hypertension: an update. Hypertension 66:920–926. https://doi.org/10.1161/HYPERTENSIONAHA.115.03624

    Article  CAS  PubMed  Google Scholar 

  79. Gerolde Cardoso V, Lopes Gonçalves G, Costa-Pessoa JM, Thieme K, Bezerra Lins B, Malavazzi Casare FA, Charleaux de Ponte M, Saraiva Camara NO, Oliveira-Souza M (2018) Angiotensin II-induced podocyte apoptosis is mediated by endoplasmic reticulum stress/PKC-δ/p38 MAPK pathway activation and trough increased Na+/H + exchanger isoform 1 activity. BMC Nephrol 19:179. https://doi.org/10.1186/s12882-018-0968-4

    Article  CAS  PubMed  Google Scholar 

  80. Berk BC, Corson MA (1997) Angiotensin II signal transduction in vascular smooth muscle: role of tyrosine kinases. Circ Res 80:607–616. https://doi.org/10.1161/01.res.80.5.607

    Article  CAS  PubMed  Google Scholar 

  81. Fiebeler A, Park J-K, Muller DN, Lindschau C, Mengel M, Merkel S, Banas B, Luft FC, Haller H (2004) Growth arrest specific protein 6/Axl signaling in human inflammatory renal diseases. Am J Kidney Dis 43:286–295. https://doi.org/10.1053/j.ajkd.2003.10.016

    Article  CAS  PubMed  Google Scholar 

  82. Melaragno MG, Wuthrich DA, Poppa V, Gill D, Lindner V, Berk BC, Corson MA (1998) Increased expression of Axl tyrosine kinase after vascular injury and regulation by G protein-coupled receptor agonists in rats. Circ Res 83:697–704. https://doi.org/10.1161/01.res.83.7.697

    Article  CAS  PubMed  Google Scholar 

  83. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lesauskaite V, Ivanoviene L, Valanciūte A (2003) [Programmed cellular death and atherogenesis: from molecular mechanisms to clinical aspects]. Med (Kaunas) 39:529–534

    Google Scholar 

  85. Huang C, Gao J, Wei T, Shen W (2022) Angiotensin II-Induced Erythrocyte Senescence Contributes to Oxidative Stress. Rejuvenation Res 25:30–38. https://doi.org/10.1089/rej.2021.0054

    Article  CAS  PubMed  Google Scholar 

  86. Patel JM, Sekharam KM, Block ER (1990) Oxidant injury increases cell surface receptor binding of angiotensin II to pulmonary artery endothelial cells. J Biochem Toxicol 5:253–258. https://doi.org/10.1002/jbt.2570050408

    Article  CAS  PubMed  Google Scholar 

  87. Meertens L, Carnec X, Lecoin MP, Ramdasi R, Guivel-Benhassine F, Lew E, Lemke G, Schwartz O, Amara A (2012) The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12:544–557. https://doi.org/10.1016/j.chom.2012.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Earp HS, Huckle WR, Dawson TL, Li X, Graves LM, Dy R (1995) Angiotensin II activates at least two tyrosine kinases in rat liver epithelial cells. Separation of the major calcium-regulated tyrosine kinase from p125FAK. J Biol Chem 270:28440–28447. https://doi.org/10.1074/jbc.270.47.28440

    Article  CAS  PubMed  Google Scholar 

  89. Berk BC, Corson MA (1997) Angiotensin II Signal Transduction in Vascular Smooth Muscle. Role of Tyrosine Kinases. Circul Res 80:607–616. https://doi.org/10.1161/01.RES.80.5.607

    Article  CAS  Google Scholar 

  90. Medeiros GF, Mendes A, Castro RA, Baú EC, Nader HB, Dietrich CP (2000) Distribution of sulfated glycosaminoglycans in the animal kingdom: widespread occurrence of heparin-like compounds in invertebrates. Biochim Biophy Acta 1475:287–294. https://doi.org/10.1016/S0304-4165(00)00079-9

    Article  CAS  Google Scholar 

  91. Gallagher JT, Lyon M (2000) Molecular structure of Heparan Sulfate and interactions with growth factors and morphogens. In: Iozzo MV (ed) Proteoglycans: structure, biology and molecular interactions. Marcel Dekker Inc., New York, New York, pp 27–59

    Google Scholar 

  92. Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Ann Rev Biochem 67:609–652. https://doi.org/10.1146/annurev.biochem.67.1.609

    Article  CAS  PubMed  Google Scholar 

  93. Buzza MS, Zamurs L, Sun J, Bird CH, Smith AI, Trapani JA, Froelich CJ, Nice EC, Bird PI (2005) Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem 280:23549–23558. https://doi.org/10.1074/jbc.M412001200

    Article  CAS  PubMed  Google Scholar 

  94. Hallak LK, Spillmann D, Collins PL, Peeples ME (2000) Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J Virol 74:10508–10513. https://doi.org/10.1128/JVI.74.22.10508-10513.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kaplan M, Aviram M (2000) Macrophage plasma membrane chondroitin sulfate proteoglycan binds oxidized low-density lipoprotein. Atherosclerosis 149:5–17. https://doi.org/10.1016/s0021-9150(99)00287-7

    Article  CAS  PubMed  Google Scholar 

  96. Anderson R (2003) Manipulation of cell surface macromolecules by flaviviruses». Adv Virus Res 59:229–274. https://

    Article  CAS  PubMed  Google Scholar 

  97. Foris G, Dezso B, Medgyesi GA, Fust G (1983) Effect of angiotensin II on macrophage functions. Immunology 48:529

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Dezso B, Foris G (1981) Effect of angiotensin II on the Fc receptor activity of rat macrophages. Immunology 42:277

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Suzuki Y, Shirato I, Okumura K, Ravetch JV, Takai T, Tomino Y, Ra C (1998) Distinct contribution of Fc receptors and angiotensin II-dependent pathways in anti-GBM glomerulonephritis. Kidney Int 54:1166–1174. https://doi.org/10.1046/j.1523-1755.1998.00108.x

    Article  CAS  PubMed  Google Scholar 

  100. Piccini Luana E, Castilla V, Damonte EB (2015) Dengue-3 Virus Entry into Vero Cells: Role of Clathrin-Mediated Endocytosis in the Outcome of Infection. PLoS ONE 10:e0140824. https://doi.org/10.1371/journal.pone.0140824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ho M-R, Tsai T-T, Chen C-L, Jhan M-K, Tsai C-C, Lee Y-C, Chen C-H, Lin C-F (2017) Blockade of dengue virus infection and viral cytotoxicity in neuronal cells in vitro and in vivo by targeting endocytic pathways. Sci Rep 7:6910. https://doi.org/10.1038/s41598-017-07023-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, Hattori T, Sugamura K (2007) Clathrin-Dependent Entry of Severe Acute Respiratory Syndrome Coronavirus into Target Cells Expressing ACE2 with the Cytoplasmic Tail Deleted. J Virol 81:8722–8729. https://doi.org/10.1128/JVI.00253-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hennig R, Pollinger K, Tessmar J, Goepferich A (2015) Multivalent targeting of AT1 receptors with angiotensin II-functionalized nanoparticles. J Drug Target 23:681–689. https://doi.org/10.3109/1061186X.2015.1035276

    Article  CAS  PubMed  Google Scholar 

  104. Thomas WG, Thekkumkara TJ, Baker KM (1996) Molecular mechanisms of angiotensin II (AT1a) receptor endocytosis. Clin Exp Pharmacol Physiol 3. https://doi.org/10.1111/j.1440-1681.1996.tb02817.x. :S74-80

  105. Takizawa T, Matsukawa S, Higuchi Y, Nakamura S, Nakanishi Y, Fukuda R (1993) Induction of programmed cell death (apoptosis) by infuenza virus infection in tissue culture cells. J Gen Virol 74:2347–2355. https://doi.org/10.1099/0022-1317-74-11-2347

    Article  CAS  PubMed  Google Scholar 

  106. Banki K, Hutter E, Gonchorof NJ, Perl A (1998) Molecular ordering in HIVinduced apoptosis. J Biol Chem 273:11944–11953. https://doi.org/10.1074/jbc.273.19.11944

    Article  CAS  PubMed  Google Scholar 

  107. Gautier I, Coppey J, Durieux C (2003) Early apoptosis-related changes triggered by HSV-1 in individual neuronlike cells. Exp Cell Res 289:174–183. https://doi.org/10.1016/s0014-4827(03)00258-1

    Article  CAS  PubMed  Google Scholar 

  108. Moller-Tank S, Kondratowicz AS, Davey RA, Rennert PD, Maury W (2013) Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J Virol 87:8327–8341. https://doi.org/10.1128/JVI.01025-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mosquera JA, Hernandez JP, Valero N, Espina LM, Añez GJ (2005) Ultrastructural studies on dengue virus type 2 infection of cultured human monocytes. Virol J 2:26. https://doi.org/10.1186/1743-422X-2-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Carnec X, Meertens L, Dejarnac O, Perera-Lecoin M, Lamine Hafirassou M, Kitaura J, Ramdasi R, Schwartz O, Amara A (2015) The Phosphatidylserine and Phosphatidylethanolamine Receptor CD300a Binds Dengue Virus and Enhances Infection. J Virol 90:92–102. https://doi.org/10.1128/JVI.01849-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pelkmans L (2005) Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochem Biophys Acta 1746:295–304. https://doi.org/10.1016/j.bbamcr.2005.06.009

    Article  CAS  PubMed  Google Scholar 

  112. Ishizaka N, Griendling KK, Lassègue B, Alexander RW (1998) Angiotensin II type 1 receptor: relationship with caveolae and caveolin after initial agonist stimulation. Hypertension 32:459–466. https://doi.org/10.1161/01.hyp.32.3.459

    Article  CAS  PubMed  Google Scholar 

  113. Oh Y-B, Gao S, Lim JM, Kim HT, Park B-H, Kim SH (2011) Caveolae are essential for angiotensin II type 1 receptor-mediated ANP secretion. Peptides 32:1422–1430. https://doi.org/10.1016/j.peptides.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  114. Csaba B, Nagy JP, Végh B, Németh A, Jenei A, MirzaHosseini S, Sebe A, Rosivall L (2012) Angiotensin II increases the permeability and PV-1 expression of endothelial cells. Am J Physiol Cell Physiol 302:C267–C276. https://doi.org/10.1152/ajpcell.00138.2011

    Article  CAS  Google Scholar 

  115. Chanthick C, Kanlaya R, Kiatbumrung R, Pattanakitsakul S-N, Thongboonkerd V (2016) Caveolae-mediated albumin transcytosis is enhanced in dengue-infected human endothelial cells: A model of vascular leakage in dengue hemorrhagic fever. Sci Rep 6:31855. https://doi.org/10.1038/srep31855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Acosta EG, Castilla V, Damonte EB (2009) Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol 11:1533–1549. https://doi.org/10.1111/j.1462-5822.2009.01345.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Peng T, Wang J-L, Chen W, Zhang J-L, Gao N, Chen Z-T, Xu X-F, Fan D-Y, An J (2009) Entry of dengue virus serotype 2 into ECV304 cells depends on clathrin-dependent endocytosis, but not on caveolae-dependent endocytosis. Can J Microbiol 55:139–145. https://doi.org/10.1139/w08-107

    Article  CAS  PubMed  Google Scholar 

  118. Rosales C, Uribe-Querol E (2017) Phagocytosis: A Fundamental Process in Immunity. Biomed Res Int 2017:9042851. https://doi.org/10.1155/2017/9042851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sobhy H (2017) A comparative review of viral entry and attachment during large and giant dsDNA virus infections. Arch Virol 162:3567–3585. https://doi.org/10.1007/s00705-017-3497-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chaturvedi UC, Nagar R, Shrivastava R (2006) Macrophage and dengue virus: friend or foe? Indian J Med Res 124:23–40

    CAS  PubMed  Google Scholar 

  121. Barhoumi T, Mansour FA, Jalouli M, Alamri HS, Ali R, Harrath AH, Aljumaa M, Boudjelal M (2023) Angiotensin II modulates THP-1-like macrophage phenotype and inflammatory signatures via angiotensin II type 1 receptor. Front Cardiovasc Med 10:1129704. https://doi.org/10.3389/fcvm.2023.1129704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Weinstock JV, Kassab JT (1984) Angiotensin II stimulation of granuloma macrophage phagocytosis and actin polymerization in murine schistosomiasis mansoni. Cell Immunol 89:46–54. https://doi.org/10.1016/0008-8749(84)90196-5

    Article  CAS  PubMed  Google Scholar 

  123. Rodgers K, Xiong S, Espinoza T, Roda N, Maldonado S, diZerega GS (2000) Angiotensin II increases host resistance to peritonitis. Clin Diagn Lab Immunol 7:635–640. https://doi.org/10.1128/CDLI.7.4.635-640.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Belline P, Silva da Melo P, Haun M, Boucault Palhares F, Boer PA, Rocha Gontijo JA, Figueiredo JF (2004) Effect of angiotensin II and losartan on the phagocytic activity of peritoneal macrophages from Balb/C mice. Mem Inst Oswaldo Cruz 99:167–172. https://doi.org/10.1590/s0074-02762004000200009

    Article  CAS  PubMed  Google Scholar 

  125. Daughaday CC, Brandt WE, McCown JM, Russell PK (1981) Evidence for two mechanisms of dengue virus infection of adherent human monocytes: trypsin-sensitive virus receptors and trypsin-resistant immune complex receptors. Infect Immun 32:469–473. https://doi.org/10.1128/iai.32.2.469-473.1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mukherjee S, Sirohi D, Dowd K, Chen Z, Diamond MS, Kuhn RJ, Pierson TC (2016) Enhancing dengue virus maturation using a stable furin over-expressing cell line. Virology 497:33–40. https://doi.org/10.1016/j.virol.2016.06.022

    Article  CAS  PubMed  Google Scholar 

  127. Rodenhuis-Zybert IA, van der Schaar HM, da Silva Voorham JM, van der Ende-Metselaar H, Lei H-Y, Wilschut J, Smit JM (2010) Immature dengue virus: a veiled pathogen? PLoS Pathog 6:e1000718. https://doi.org/10.1371/journal.ppat.1000718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Seachrist JL, Laporte SA, Dale LB, Babwah AV, Caron MG, Anborgh PH, Ferguson SSG (2002) Rab5 association with the angiotensin II type 1A receptor promotes Rab5 GTP binding and vesicular fusion. J Biol Chem 277:679–685. https://doi.org/10.1074/jbc.M109022200

    Article  CAS  PubMed  Google Scholar 

  129. Dale LB, Seachrist JL, Babwah AV, Ferguson SSG (2004) Regulation of angiotensin II type 1A receptor intracellular retention, degradation, and recycling by Rab5, Rab7, and Rab11 GTPases. J Biol Chem 279:13110–13118. https://doi.org/10.1074/jbc.M313333200

    Article  CAS  PubMed  Google Scholar 

  130. Hunyady L, Baukal AJ, Gaborik Z, Olivares-Reyes JA, Bor M, Szaszak M, Lodge R, Catt KJ, Balla T (2002) Differential PI 3-kinase dependence of early and late phases of recycling of the internalized AT1 angiotensin receptor. J Cell Biol 157:1211–1222. https://doi.org/10.1083/jcb.200111013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kouretova J, Hammamy MZ, Epp A, Hardes K, Kallis S, Zhang L, Hilgenfeld R, Bartenschlager R, Steinmetzer T (2017) Effects of NS2B-NS3 protease and furin inhibition on West Nile and Dengue virus replication. J Enzyme Inhib Med Chem 32:712–721. https://doi.org/10.1080/14756366.2017.1306521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cilhoroz BT, Schifano ED, Panza GA, Ash GI, Corso L, Chen MH, Deshpande V, Zaleski A, Farinatti P, Santos LP, Taylor BA, O'Neill RJ, Thompson PD, Pescatello LS (2019) Furin variant associations with postexercise hypotension are intensity and race dependent. Physiol Rep 7:1–13. https://doi.org/10.14814/phy2.13952

    Article  CAS  Google Scholar 

  133. Peña C, Hernandez-Fonseca JP, Rincon J, Pedreañez A, Viera N, Mosquera J (2013) Proinflammatory role of angiotensin II in mercuric induced nephropathy in rats. J Immunotoxicol 10:125–132. https://doi.org/10.3109/1547691X.2012.699478

    Article  CAS  PubMed  Google Scholar 

  134. 134, Vargas R, Rincon J, Pedreañez A, Viera N, Hernandez-Fonseca JP, Peña C, Mosquera J (2012) Role of Angiotensin II in the brain inflammatory events during experimental diabetes in rats. Brain Res 1453:64–76. https://doi.org/10.1016/j.brainres.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  135. Muñoz M, Rincon J, Pedreañez A, Viera N, Hernandez-Fonseca JP, Mosquera J (2011) Proinflammatory role of angiotensin II in a rat nephrosis model induced by adriamycin. J Ren Ang Ald Syst 12:404–412. https://doi.org/10.1177/1470320311410092

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Instituto de Investigaciones Cllnicas Dr. Américo Negrette, Facultad de Medicina, Universidad de Zulia, Maracaibo, Venezuela.

Funding

No financial support was received for this article.

Author information

Authors and Affiliations

Authors

Contributions

JM-S and AP conceived the subject matter and contributed to the design of the work. JM-S, AP, YC, JPH-F, and RV contributed to the acquisition, analysis, or interpretation of data. JM-S and AP wrote the original draft. JM-S, AP, YC, RV, and JPH-F critically revised the first draft. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Jesús Alberto Mosquera.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by Eiji Morita.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedreañez, A., Carrero, Y., Vargas, R. et al. Role of angiotensin II in cellular entry and replication of dengue virus. Arch Virol 169, 121 (2024). https://doi.org/10.1007/s00705-024-06040-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-024-06040-4

Navigation