Skip to main content

Advertisement

Log in

Modulation of plasmacytoid dendritic cell and CD4+ T cell differentiation accompanied by upregulation of the cholinergic anti-inflammatory pathway induced by enterovirus 71

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Enterovirus 71 (EV71) is a neurotropic enterovirus associated with hand, foot, and mouth disease (HFMD) fatalities. In this study, we investigated the impact of EV71 on plasmacytoid dendritic cells (pDCs) and CD4+ T cells. The results showed that pDCs were promptly activated, secreting interferon (IFN)-α and inducing CD4+ T cell proliferation and differentiation during early EV71 infection. This initiated adaptive immune responses and promoted proinflammatory cytokine production by CD4+ T cells. Over time, viral nucleic acids and proteins were synthesized in pDCs and CD4+ T cells. Concurrently, the cholinergic anti-inflammatory pathway (CAP) was activated, exhibiting an anti-inflammatory role. With constant viral stimulation, pDCs and CD4+ T cells showed reduced differentiation and cytokine secretion. Defects in pDCs were identified as a key factor in CD4+ T cell tolerance. CAP had a more significant regulatory effect on CD4+ T cells than on pDCs and was capable of inhibiting inflammation in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

EV71:

Enterovirus 71

HFMD:

Hand, foot, and mouth disease

pDC:

Plasmacytoid dendritic cell

CAP:

Cholinergic anti-inflammatory pathway

IFN:

Interferon

IL:

Interleukin

G-CSF:

Granulocyte-colony stimulating factor

TNF:

Tumor necrosis factor

ChAT:

Choline acetyltransferase

AChE:

Acetylcholinesterase

nAChR:

Nicotinic acetylcholine receptor

PBMC:

Peripheral blood mononuclear cell

PBS:

Phosphate-buffered saline

CTAB-QD:

CTAB-modified quantum dot

References

  1. Yang SL, Chou YT, Wu CN, Ho MS (2011) Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J Virol 85:11809–11820

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lo SH, Huang YC, Huang CG, Tsao KC, Li WC, Hsieh YC et al (2011) Clinical and epidemiologic features of Coxsackievirus A6 infection in children in northern Taiwan between 2004 and 2009. J Microbiol Immunol Infect 44:252–257

    Article  CAS  PubMed  Google Scholar 

  3. Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T (2010) Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol 9:1097–1105

    Article  PubMed  Google Scholar 

  4. Second J, Velter C, Cales S, Truchetet F, Lipsker D, Cribier B (2017) Clinicopathologic analysis of atypical hand, foot, and mouth disease in adult patients. J Am Acad Dermatol 76:722–729

    Article  PubMed  Google Scholar 

  5. Lin TY, Chang LY, Hsia SH, Huang YC, Chiu CH, Hsueh C et al (2002) The 1998 enterovirus 71 outbreak in Taiwan: pathogenesis and management. Clin Infect Dis 34(Suppl 2):S52–S57

    Article  PubMed  Google Scholar 

  6. Huang HI, Shih SR (2015) Neurotropic enterovirus infections in the central nervous system. Viruses 7:6051–6066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown BA, Pallansch MA (1995) Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus. Virus Res 39:195–205

    Article  CAS  PubMed  Google Scholar 

  8. Chang CY, Li JR, Ou YC, Chen WY, Liao SL, Raung SL et al (2015) Enterovirus 71 infection caused neuronal cell death and cytokine expression in cultured rat neural cells. IUBMB Life 67:789–800

    Article  CAS  PubMed  Google Scholar 

  9. Lin TY, Hsia SH, Huang YC, Wu CT, Chang LY (2003) Proinflammatory cytokine reactions in enterovirus 71 infections of the central nervous system. Clin Infect Dis 36:269–274

    Article  CAS  PubMed  Google Scholar 

  10. Griffiths MJ, Ooi MH, Wong SC, Mohan A, Podin Y, Perera D et al (2012) In enterovirus 71 encephalitis with cardio-respiratory compromise, elevated interleukin 1beta, interleukin 1 receptor antagonist, and granulocyte colony-stimulating factor levels are markers of poor prognosis. J Infect Dis 206:881–892

    Article  CAS  PubMed  Google Scholar 

  11. Lin TY, Twu SJ, Ho MS, Chang LY, Lee CY (2003) Enterovirus 71 outbreaks, Taiwan: occurrence and recognition. Emerg Infect Dis 9:291–3

  12. Ye N, Gong X, Pang LL, Gao WJ, Zhang YT, Li XL, et al (2015) Cytokine responses and correlations thereof with clinical profiles in children with enterovirus 71 infections. BMC Infect Dis 15:225

  13. Frenz T, Graalmann L, Detje CN, Doring M, Grabski E, Scheu S, et al (2014) Independent of plasmacytoid dendritic cell (pDC) infection, pDC triggered by virus-infected cells mount enhanced type I IFN responses of different composition as opposed to pDC stimulated with free virus. J Immunol 193:2496–503

  14. Fitzgerald-Bocarsly P (1993) Human natural interferon-alpha producing cells. Pharmacol Ther 60:39–62

  15. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, et al (1999) The nature of the principal type 1 interferonproducing cells in human blood. Science 284:1835–7

  16. Liao YT, Tsai HP, Wang SM et al (2021) Clinical and immune responses of peripheral chemical sympathectomy in enterovirus 71 infection. J Front Immunol 12:700903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo J, Huo C, Qin H et al (2021) Chimeric enterovirus 71 virus-like particle displaying conserved coxsackievirus A16 epitopes elicits potent immune responses and protects mice against lethal EV71 and CA16 infection. J Vaccine 39(30):4135–4143

    Article  CAS  PubMed  Google Scholar 

  18. Pan Z, Zhao R, Shen Y et al (2021) Low-frequency, exhausted immune status of CD56(dim) NK cells and disordered inflammatory cytokine secretion of CD56(bright) NK cells associated with progression of severe HFMD, especially in EV71-infected patients. J Int Immunopharmacol 101(Pt B):108369

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, Pu J, Huang H et al (2013) EV71-infected CD14(+) cells modulate the immune activity of T lymphocytes in rhesus monkeys. J Emerg Microbes Infect 2(7):e44

    PubMed  PubMed Central  Google Scholar 

  20. Gong X, Zhou J, Zhu W, Liu N, Li J, Li L et al (2012) Excessive proinflammatory cytokine and chemokine responses of human monocyte-derived macrophages to enterovirus 71 infection. BMC Infect Dis 12:224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Liu H, Wang L, Yang F, Hu Y, Ren X et al (2013) Comparative study of the cytokine/chemokine response in children with differing disease severity in enterovirus 71-induced hand, foot, and mouth disease. PLoS One 8:e67430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang SM, Lei HY, Liu CC (2012) Cytokine immunopathogenesis of enterovirus 71 brain stem encephalitis. Clin Dev Immunol 2012:876241

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xie GC, Guo NJ, Grenman R, Wang H, Wang Y, Vuorenmma M et al (2016) Susceptibility of human tonsillar epithelial cells to enterovirus 71 with normal cytokine response. Virology 494:108–118

    Article  CAS  PubMed  Google Scholar 

  24. Cervantes-Barragan L, Lewis KL, Firner S, Thiel V, Hugues S, Reith W et al (2012) Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proc Natl Acad Sci USA 109:3012–3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muth S, Schutze K, Schild H, Probst HC (2012) Release of dendritic cells from cognate CD4+ T-cell recognition results in impaired peripheral tolerance and fatal cytotoxic T-cell mediated autoimmunity. Proc Natl Acad Sci USA 109:9059–9064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kadowaki N, Antonenko S, Lau JY, Liu YJ (2000) Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med 192:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cox JA, Hiscox JA, Solomon T, Ooi MH, Ng LFP (2017) Immunopathogenesis and virus-host interactions of enterovirus 71 in patients with hand, foot and mouth disease. Front Microbiol 8:2249

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rasti M, Khanbabaei H, Teimoori A (2019) An update on enterovirus 71 infection and interferon type I response. Rev Med Virol 29:e2016

    Article  PubMed  Google Scholar 

  29. Chen N, Li X, Li P, Pan Z, Ding Y, Zou D et al (2016) Enterovirus 71 inhibits cellular type I interferon signaling by inhibiting host RIG-I ubiquitination. Microb Pathog 100:84–89

    Article  CAS  PubMed  Google Scholar 

  30. Kawashima K, Fujii T (2000) Extraneuronal cholinergic system in lymphocytes. Pharmacol Ther 86:29–48

    Article  CAS  PubMed  Google Scholar 

  31. Kawashima K, Fujii T (2003) The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci 74:675–696

    Article  CAS  PubMed  Google Scholar 

  32. Kawashima K, Fujii T (2004) Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Front Biosci 9:2063–2085

    Article  CAS  PubMed  Google Scholar 

  33. Wu S, Luo H, Xiao X, Zhang H, Li T, Zuo X (2014) Attenuation of collagen induced arthritis via suppression on Th17 response by activating cholinergic anti-inflammatory pathway with nicotine. Eur J Pharmacol 735:97–104

    Article  CAS  PubMed  Google Scholar 

  34. Nizri E, Irony-Tur-Sinai M, Lory O, Orr-Urtreger A, Lavi E, Brenner T (2009) Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. J Immunol 183:6681–6688

    Article  CAS  PubMed  Google Scholar 

  35. Galitovskiy V, Qian J, Chernyavsky AI, Marchenko S, Gindi V, Edwards RA et al (2011) Cytokine-induced alterations of alpha7 nicotinic receptor in colonic CD4 T cells mediate dichotomous response to nicotine in murine models of Th1/Th17- versus Th2-mediated colitis. J Immunol 187:2677–2687

    Article  CAS  PubMed  Google Scholar 

  36. Song FX, Zhao LQ, Zhu RN, Song QW, Deng J, Tian R et al (2018) Protective effect of an alpha 7 nicotinic acetylcholine receptor agonist against enterovirus 71 infection in neuronal cells. Antiviral Res 149:106–112

    Article  CAS  PubMed  Google Scholar 

  37. Cheng HY, Huang YC, Yen TY, Hsia SH, Hsieh YC, Li CC et al (2014) The correlation between the presence of viremia and clinical severity in patients with enterovirus 71 infection: a multi-center cohort study. BMC Infect Dis 14:417

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brioni JD, Kim DJ, O’Neill AB (1996) Nicotine cue: lack of effect of the alpha 7 nicotinic receptor antagonist methyllycaconitine. Eur J Pharmacol 301:1–5

    Article  CAS  PubMed  Google Scholar 

  39. Ang LW, Phoon MC, Wu Y, Cutter J, James L, Chow VT (2011) The changing seroepidemiology of enterovirus 71 infection among children and adolescents in Singapore. BMC Infect Dis 11:270

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang SM, Liu CC (2009) Enterovirus 71: epidemiology, pathogenesis and management [J]. Expert Rev Anti Infect Ther 7(6):735–742

    Article  PubMed  Google Scholar 

  41. Jin Y, Zhang R, Wu W, Duan G (2018) Antiviral and inflammatory cellular signaling associated with enterovirus 71 infection. Viruses 10

  42. Santini SM, Di Pucchio T, Lapenta C, Parlato S, Logozzi M, Belardelli F (2002) The natural alliance between type I interferon and dendritic cells and its role in linking innate and adaptive immunity. J Interferon Cytokine Res 22:1071–1080

    Article  CAS  PubMed  Google Scholar 

  43. Albert ML, Decalf J, Pol S (2008) Plasmacytoid dendritic cells move down on the list of suspects: in search of the immune pathogenesis of chronic hepatitis C. J Hepatol 49:1069–1078

    Article  CAS  PubMed  Google Scholar 

  44. Fitzgerald-Bocarsly P, Jacobs ES (2010) Plasmacytoid dendritic cells in HIV infection: striking a delicate balance. J Leukoc Biol 87:609–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duan XZ, Wang M, Li HW, Zhuang H, Xu D, Wang FS (2004) Decreased frequency and function of circulating plasmocytoid dendritic cells (pDC) in hepatitis B virus infected humans. J Clin Immunol 24:637–646

    Article  CAS  PubMed  Google Scholar 

  46. van der Molen RG, Sprengers D, Binda RS, de Jong EC, Niesters HG, Kusters JG et al (2004) Functional impairment of myeloid and plasmacytoid dendritic cells of patients with chronic hepatitis B. Hepatology 40:739–746

    Google Scholar 

  47. Gilliet M, Cao W, Liu YJ (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8:594–606

    Article  CAS  PubMed  Google Scholar 

  48. Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306

    Article  CAS  PubMed  Google Scholar 

  49. Dzionek A, Sohma Y, Nagafune J, Cella M, Colonna M, Facchetti F et al (2001) BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. J Exp Med 194:1823–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hetzel M, Suzuki T, Hashtchin AR, Arumugam P, Carey B, Schwabbauer M et al (2017) Function and safety of lentivirus-mediated gene transfer for CSF2RA-deficiency. Hum Gene Ther Methods 28:318–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Okada R, Kondo T, Matsuki F, Takata H, Takiguchi M (2008) Phenotypic classification of human CD4+ T cell subsets and their differentiation. Int Immunol 20:1189–1199

    Article  CAS  PubMed  Google Scholar 

  52. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 81960294 and 82060192), the Yunnan International Science and Technology Cooperation of Allergic Disease (202103AF140008), the Yunnan Basic Research Project (202101AT070231), the Yunnan Young and Middle-Aged Academic and Technical Leaders (Reserve) Project (202105AC160012), the Yunnan High-Level Health Technical Personnel Training Program (D-2019017), and the Kunming Health Science and Technology Personnel Training Project (2020-SW-11).

Author information

Authors and Affiliations

Authors

Contributions

Li Li participated in study design, analysis and interpretation of results, manuscript preparation, data collection and processing, and statistical analysis. Rongwei Huang, XiaoNing Liu and Xiaoyi Xiang participated in data collection and processing. Yuantao Zhou, Xingxing Feng, Lvyuan Tao, Jia Yu, Qin Yi, Yanchun Wang, and Xiaomei Liu participated in sample collection and processing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-Mei Liu.

Ethics declarations

Ethical approval and consent to participate

All of the clinical samples used in this study were remaining human blood samples that had been collected by the Clinical Laboratory Department of Kunming Children's Hospital. Ethical approval for the study was given by the Ethics Committee of Kunming Children's Hospital.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Akbar Dastjerdi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Huang, RW., Liu, XN. et al. Modulation of plasmacytoid dendritic cell and CD4+ T cell differentiation accompanied by upregulation of the cholinergic anti-inflammatory pathway induced by enterovirus 71. Arch Virol 169, 73 (2024). https://doi.org/10.1007/s00705-024-05974-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-024-05974-z

Navigation