Skip to main content

Advertisement

Log in

Tracing the journey of poxviruses: insights from history

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The historical significance of the poxviruses is profound, largely due to the enduring impact left by smallpox virus across many centuries. The elimination of smallpox is a remarkable accomplishment in the history of science and medicine, with centuries of devoted efforts resulting in the development and widespread administration of smallpox vaccines. This review provides insight into the pivotal historical events involving medically significant poxviruses. Understanding the remarkable saga of combatting smallpox is crucial, serving as a guidepost for potential future encounters with poxvirus infections. There is a continual need for vigilant observation of poxvirus evolution and spillover from animals to humans, considering the expansive range of susceptible hosts. The recent occurrence of monkeypox cases in non-endemic countries stands as a stark reminder of the ease with which infections can be disseminated through international travel and trade. This backdrop encourages introspection about our journey and the current status of poxvirus research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poxvirus | CDC [Internet] (2023) [cited 2023 Aug 7]. Available from: https://www.cdc.gov/poxvirus/index.html

  2. Poxviridae. Fenner’s Veterinary Virology (2017) Elsevier Inc. https://doi.org/10.1016/B978-0-12-800946-8.00007-6

  3. Origin and Evolution of Poxviruses, Chap. 19 John W. Barrett and Grant McFadden https://doi.org/10.1016/B978-0-12-374153-0.00019-9

  4. Riedel S (2005) Edward Jenner and the history of smallpox and vaccination. Proc Bayl Univ Med Cent 18(1):21–25. https://doi.org/10.1080/08998280.2005.11928028

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yang Z, Gray M, Winter L (2021) Why do poxviruses still matter? Cell Biosci 11(1):96. https://doi.org/10.1186/s13578-021-00610-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Poxviruses. Field’s Virology. 6th edition. Knipe DM, Howley PM eds (2013) Lippincott Williams & Wilkins, A Wolters Kluwer. Pp 2160–2184

  7. Fenner F (1993) Smallpox: emergence, global spread, and eradication. Hist Philos Life Sci 15(3):397–420. https://pubmed.ncbi.nlm.nih.gov/7529932/

    CAS  PubMed  Google Scholar 

  8. Berche P (2022) Life and death of smallpox. Presse Med 51(3):104117. https://doi.org/10.1016/J.LPM.2022.104117

    Article  PubMed  Google Scholar 

  9. Gubser C, Smith GL (2002) The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J Gen Virol 83(Pt 4):855–872. https://doi.org/10.1099/0022-1317-83-4-855

    Article  CAS  PubMed  Google Scholar 

  10. Brüssow H (2023) Pandemic potential of poxviruses: From an ancient killer causing smallpox to the surge of monkeypox. Microb Biotechnol Published online. https://doi.org/10.1111/1751-7915.14294

    Article  Google Scholar 

  11. Thèves C, Crubézy E, Biagini P (2016) History of Smallpox and Its Spread in Human Populations. Microbiol Spectr 4(4). https://doi.org/10.1128/MICROBIOLSPEC.POH-0004-2014/ASSET/9EE93311-3D78-4656-8BCB-02C9958514DD/ASSETS/GRAPHIC/POH-0004-2014-FIG3.GIF

  12. Thein MM, Goh LG, Phua KH (1988) The smallpox story: from variolation to victory. Asia-Pac J Public Health/Asia-Pac Acad Consort Public Health 2(3):203–210. https://doi.org/10.1177/101053958800200313/ASSET/101053958800200313.FP.PNG_V03

    Article  CAS  Google Scholar 

  13. Babkin IV, Babkina IN (2015) The Origin of the Variola Virus. Viruses 7(3):1100. https://doi.org/10.3390/V7031100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Needham J (2000) Science and Civilisation in China, Part 6, Medicine. Cambridge University Press

  15. Mühlemann, B., Vinner, L., Margaryan, A., Wilhelmson, H., Castro, C. D. L. F., Allentoft,M. E., Damgaard, P. D. B., Hansen, A. J., Nielsen, S. H., Strand, L. M., Bill, J.,Buzhilova, A., Pushkina, T., Falys, C., Khartanovich, V., Moiseyev, V., Jørkov, M.L. S., Sørensen, P. Ø., Magnusson, Y., … Sikora, M. (2020). Diverse variola virus(smallpox) strains were widespread in northern Europe in the Viking Age. Science, 369(6502)

  16. Meyer H, Ehmann R, Smith GL (2020) Smallpox in the Post-Eradication Era. Viruses 12(2). https://doi.org/10.3390/V12020138

  17. Dinc G, Ulman YI (2007) The introduction of variolation A La Turca to the West by Lady Mary Montagu and Turkey’s contribution to this. Vaccine 25(21):4261–4265. https://doi.org/10.1016/J.VACCINE.2007.02.076

    Article  PubMed  Google Scholar 

  18. Williams G (2010 May) Angel of death: the story of smallpox. Springer, p 17

  19. Jenner E (1918) An Inquiry into the Causes and Effects of the Variolae Vaccinae: A Disease Discovered in Some of the Western Counties of England, Particularly Gloucestershire, and Known by the Name of the Cow Pox. Scientific and Medical Knowledge Production, 1796– Published online May 31, 2023:40–50. https://doi.org/10.4324/9781003009337-8

  20. Ellis H (2021) James Phipps, first to be vaccinated against smallpox by Edward Jenner. J Perioper Pract 31(1–2):51–52. https://doi.org/10.1177/1750458920950165

    Article  PubMed  Google Scholar 

  21. Plaut M, Tinkle SS (2003) Risks of smallpox vaccination: 200 years after Jenner. J Allergy Clin Immunol 112(4):683–685. https://doi.org/10.1016/J.JACI.2003.07.002

    Article  PubMed  Google Scholar 

  22. World Health Organization. The Global Eradication of Smallpox: Final Report of the Global Commission for the Certification of Smallpox Eradication, Geneva, December 1979 (1980) ; Accessed August 17, 2023. https://apps.who.int/iris/bitstream/handle/10665/39253/a41438.pdf

  23. A letter on the inoculation of the vaccina, practised in Sicily: addressed to her excellency Madam D. Stefania Statella: Calcagni, Francesco: Free Download, Borrow, and Streaming: Internet Archive. Accessed August 17 (2023) https://archive.org/details/39002011129674.med.yale.edu

  24. Dutta M, Basu RN (2011) Lessons from smallpox eradication campaign in Bihar state and in India. Vaccine 29(SUPPL 4):D19–D21. https://doi.org/10.1016/J.VACCINE.2011.12.001

    Article  PubMed  Google Scholar 

  25. History of smallpox vaccination. Accessed August 17 (2023) https://www.who.int/news-room/spotlight/history-of-vaccination/history-of-smallpox-vaccination

  26. Pallen M (2018) The last days of smallpox: Tragedy in Birmingham. Epidemiol Infect 147(e13):1–2

    Google Scholar 

  27. Shishkina LN, Mazurkov OY, Bormotov NI et al (2023) Safety and Pharmacokinetics of the Substance of the Anti-Smallpox Drug NIOCH-14 after Oral Administration to Laboratory Animals. Viruses 15(1). https://doi.org/10.3390/V15010205

  28. Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM (2002) Public Health Assessment of Potential Biological Terrorism Agents. Emerg Infect Dis 8(2):225. https://doi.org/10.3201/EID0802.010164

    Article  PubMed  PubMed Central  Google Scholar 

  29. Taube JC, Rest EC, Lloyd-Smith JO, Bansal S (2023) The global landscape of smallpox vaccination history and implications for current and future orthopoxvirus susceptibility: a modelling study. Lancet Infect Dis 23(4):454–462. https://doi.org/10.1016/S1473-3099(22)00664-8

    Article  PubMed  Google Scholar 

  30. Arita I (2011) Smallpox: should we destroy the last stockpile? Expert Rev Anti Infect Ther 9(10):837. https://doi.org/10.1586/ERI.11.98

    Article  PubMed  Google Scholar 

  31. Henderson DA (2011) Smallpox virus destruction and the implications of a new vaccine. Biosecur Bioterror 9(2):163–168. https://doi.org/10.1089/BSP.2011.0011

    Article  CAS  PubMed  Google Scholar 

  32. World Health Organization (1994) Report of the Meeting of the Ad Hoc Committee on Orthopoxvirus Infections;

  33. Henderson DA, Arita I (2014) The Smallpox Threat: A Time to Reconsider Global Policy. 12(3):117–121. doi:10.1089/BSP.2014.1509.COMMhttps://home.liebertpub.com/bsp/

  34. WHA64(11) (2023) https://www.who.int/publications/i/item/WHA64-11

  35. A74/43 - Report by the Director-General - Smallpox eradication. Accessed August 17 (2023) https://www.who.int/publications/i/item/a74-43---report-by-the-director-general---smallpox-eradication

  36. World Health Organization. The Global Eradication of Smallpox: Final Report of the Global Commission for the Certification of Smallpox Eradication, Geneva, December 1979 (1980) ; Accessed August 17, 2023. https://apps.who.int/iris/bitstream/handle/10665/39253/a41438.pdf

  37. von Magnus P, Andersen EK, Petersen KB, Birch-Andersen A, A POX-LIKE DISEASE (1959) IN CYNOMOLGUS MONKEYS. Acta Pathologica Microbiologica Scandinavica 46(2):156–176. https://doi.org/10.1111/J.1699-0463.1959.TB00328.X

    Article  Google Scholar 

  38. Arita I, Henderson DA (1968) Smallpox and monkeypox in non-human primates. Bull World Health Organ 39(2):277. Accessed August 18, 2023.

  39. Monkeypox and smallpox in Africa (1977) Br Med J 1(6060):530. https://doi.org/10.1136/bmj.1.6060.530

    Article  Google Scholar 

  40. Gispen R, Brand Saathof B, Hekker AC (1976) Monkeypox-specific antibodies in human and simian sera from the Ivory Coast and Nigeria. Bull World Health Organ 53(4):355. Accessed August 18, 2023.

  41. Breman JG, Kalisa-Ruti, Steniowski MV, Zanotto E, Gromyko AI, Arita I (1980) Human monkeypox, 1970-79. Bull World Health Organ 58(2):165. Accessed August 18, 2023.

  42. Arita I, Henderson DA (1976) Monkeypox and whitepox viruses in West and Central Africa. Bull World Health Organ 53(4):347 Accessed August 18, 2023.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Reynolds MG, Damon IK (2012) Outbreaks of human monkeypox after cessation of smallpox vaccination. Trends Microbiol 20(2):80–87. https://doi.org/10.1016/J.TIM.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  44. McCollum AM, Hill A, Shelus V et al (2023) Epidemiology of human monkeypox (mpox) – worldwide, 2018–2021. Weekly epidemiological record. Published online January 20, Accessed August 18, 2023. https://apps.who.int/iris/bitstream/handle/10665/365630/WER9803-29-36.pdf?sequence=1&isAllowed=y

  45. Reynolds MG, Yorita KL, Kuehnert MJ et al (2006) Clinical Manifestations of Human Monkeypox Influenced by Route of Infection. J Infect Dis 194(6):773–780. https://doi.org/10.1086/505880

    Article  PubMed  Google Scholar 

  46. Di Gennaro F, Veronese N, Marotta C et al (2022) Human Monkeypox: A Comprehensive Narrative Review and Analysis of the Public Health Implications. Microorganisms 10(8). https://doi.org/10.3390/MICROORGANISMS10081633

  47. Bunge EM, Hoet B, Chen L et al (2022) The changing epidemiology of human monkeypox—A potential threat? A systematic review. PLoS Negl Trop Dis 16(2). https://doi.org/10.1371/JOURNAL.PNTD.0010141

  48. Likos AM, Sammons SA, Olson VA et al (2005) A tale of two clades: Monkeypox viruses. J Gen Virol 86(10):2661–2672. https://doi.org/10.1099/VIR.0.81215-0/CITE/REFWORKS

    Article  CAS  PubMed  Google Scholar 

  49. Martínez-Fernández DE, Fernández-Quezada D, Casillas-Muñoz FAG et al (2023) Human Monkeypox: A Comprehensive Overview of Epidemiology, Pathogenesis, Diagnosis, Treatment, and Prevention Strategies. Pathogens 12(7). https://doi.org/10.3390/PATHOGENS12070947

  50. World Health Organization. 2022-23 Mpox (Monkeypox) Outbreak: Global Trends. Published August 16 (2023) Accessed August 19, 2023. https://worldhealthorg.shinyapps.io/mpx_global/

  51. Kumar N, Acharya A, Gendelman HE, Byrareddy SN (2022) The 2022 outbreak and the pathobiology of the monkeypox virus. J Autoimmun 131:102855. https://doi.org/10.1016/J.JAUT.2022.102855

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sharma A, Prasad H, Kaeley N, Bondalapati A, Edara L, Kumar YA (2023) Monkeypox epidemiology, clinical presentation, and transmission: a systematic review. Int J Emerg Med 16(1):20. https://doi.org/10.1186/S12245-023-00491-3

    Article  PubMed  PubMed Central  Google Scholar 

  53. O’Toole, Á., Neher, R. A., Ndodo, N., Borges, V., Gannon, B., Gomes, J. P., Groves,N., King, D. J., Maloney, D., Lemey, P., Lewandowski, K., Loman, N., Myers, R., Omah,I. F., Suchard, M. A., Worobey, M., Chand, M., Ihekweazu, C., Ulaeto, D., … Rambaut,A. (2023). APOBEC3 deaminase editing in mpox virus as evidence for sustained human transmission since at least 2016. Science, 382(6670), 595–600

  54. Jenner E (1918) An Inquiry into the Causes and Effects of the Variolae Vaccinae: A Disease Discovered in Some of the Western Counties of England, Particularly Gloucestershire, and Known by the Name of the Cow Pox. Scientific and Medical Knowledge Production, 1796– Published online May 31, 2023:40–50. https://doi.org/10.4324/9781003009337-8

  55. Baxby D (1977) The Origins of Vaccinia Virus. J Infect Dis 136(3):453–455. https://doi.org/10.1093/INFDIS/136.3.453

    Article  CAS  PubMed  Google Scholar 

  56. Esparza J, Nitsche A, Damaso CR (2018) Beyond the myths: Novel findings for old paradigms in the history of the smallpox vaccine. PLoS Pathog 14(7). https://doi.org/10.1371/JOURNAL.PPAT.1007082

  57. Weiss RA, Esparza J (2015) The prevention and eradication of smallpox: a commentary on Sloane (1755) ‘An account of inoculation’. Philosophical Trans Royal Soc B: Biol Sci 370(1666):20140378. https://doi.org/10.1098/RSTB.2014.0378

    Article  Google Scholar 

  58. Damaso CR (2018) Revisiting Jenner’s mysteries, the role of the Beaugency lymph in the evolutionary path of ancient smallpox vaccines. Lancet Infect Dis 18(2):e55–e63. https://doi.org/10.1016/S1473-3099(17)30445-0

    Article  PubMed  Google Scholar 

  59. Molteni C, Forni D, Cagliani R, Clerici M, Sironi M (2022) Genetic ancestry and population structure of vaccinia virus. NPJ Vaccines 7(1). https://doi.org/10.1038/S41541-022-00519-4

  60. Esparza J, Schrick L, Damaso CR, Nitsche A (2017) Equination (inoculation of horsepox): An early alternative to vaccination (inoculation of cowpox) and the potential role of horsepox virus in the origin of the smallpox vaccine. Vaccine 35(52):7222–7230. https://doi.org/10.1016/J.VACCINE.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  61. Qin L, Upton C, Hazes B, Evans DH (2011) Genomic Analysis of the Vaccinia Virus Strain Variants Found in Dryvax Vaccine. J Virol 85(24):13049. https://doi.org/10.1128/JVI.05779-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qin L, Favis N, Famulski J, Evans DH (2015) Evolution of and Evolutionary Relationships between Extant Vaccinia Virus Strains. J Virol 89(3):1809–1824. https://doi.org/10.1128/JVI.02797-14

    Article  CAS  PubMed  Google Scholar 

  63. Jacobs BL, Langland JO, Kibler KV et al (2009) Vaccinia Virus Vaccines: Past, Present and Future. Antiviral Res 84(1):1. https://doi.org/10.1016/J.ANTIVIRAL.2009.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qin L, Liang M, Evans DH (2013) Genomic analysis of vaccinia virus strain TianTan provides new insights into the evolution and evolutionary relationships between Orthopoxviruses. Virology 442(1):59–66. https://doi.org/10.1016/J.VIROL.2013.03.025

    Article  CAS  PubMed  Google Scholar 

  65. Tack DM, Karem KL, Montgomery JR et al (2013) Unintentional transfer of vaccinia virus associated with smallpox vaccines: ACAM2000(®) compared with Dryvax(®). Hum Vaccin Immunother 9(7):1489–1496. https://doi.org/10.4161/HV.24319

    Article  PubMed  Google Scholar 

  66. Belongia EA, Naleway AL (2003) Smallpox Vaccine: The Good, the Bad, and the Ugly. Clin Med Res 1(2):87. https://doi.org/10.3121/CMR.1.2.87

    Article  PubMed  PubMed Central  Google Scholar 

  67. Piccini A, Paoletti E (1988) Vaccinia: virus, vector, vaccine. Adv Virus Res 34(C):43–64. https://doi.org/10.1016/S0065-3527(08)60515-1

    Article  CAS  PubMed  Google Scholar 

  68. Moussatché N, Damaso CR, McFadden G (2008) When good vaccines go wild: Feral Orthopoxvirus in developing countries and beyond. J Infect Dev Ctries 2(3):156–173. https://doi.org/10.3855/JIDC.258

    Article  PubMed  Google Scholar 

  69. Peres MG, Bacchiega TS, Appolinário CM et al (2018) Vaccinia Virus in Blood Samples of Humans, Domestic and Wild Mammals in Brazil. Viruses 10(1). https://doi.org/10.3390/V10010042

  70. Bhanuprakash V, Venkatesan G, Balamurugan V et al (2010) Zoonotic Infections of Buffalopox in India. Zoonoses Public Health 57(7–8):e149–e155. https://doi.org/10.1111/j.1863-2378.2009.01314.x

    Article  CAS  PubMed  Google Scholar 

  71. Saud Z, Butt TM (2020) Another case of mistaken identity? Vaccinia virus in another live Camelpox vaccine. Biologicals 65:39–41. https://doi.org/10.1016/J.BIOLOGICALS.2020.04.002

    Article  CAS  PubMed  Google Scholar 

  72. Khalafalla AI, Al Hosani MA, Ishag HZA, Al Muhairi SS (2020) More cell culture passaged camelpox virus sequences found resembling those of vaccinia virus. Open Vet J 10(2):144–156. https://doi.org/10.4314/ovj.v10i2.4

    Article  PubMed  PubMed Central  Google Scholar 

  73. Marcacci M, Khalafalla AI, Al Hammadi ZM et al (2020) Genome sequencing of a camelpox vaccine reveals close similarity to modified Vaccinia virus Ankara (MVA). Viruses 12(8). https://doi.org/10.3390/v12080786

  74. Orlova OV, Glazkova DV, Bogoslovskaya EV, Shipulin GA, Yudin SM (2022) Development of Modified Vaccinia Virus Ankara-Based Vaccines: Advantages and Applications. Vaccines (Basel) 10(9). https://doi.org/10.3390/VACCINES10091516

  75. Shen Y, Nemunaitis J (2005) Fighting cancer with vaccinia virus: teaching new tricks to an old dog. Mol Ther 11(2):180–195. https://doi.org/10.1016/J.YMTHE.2004.10.015

    Article  CAS  PubMed  Google Scholar 

  76. Kaynarcalidan O, Moreno Mascaraque S, Drexler I (2021) Vaccinia Virus: From Crude Smallpox Vaccines to Elaborate Viral Vector Vaccine Design. Biomedicines 9(12). https://doi.org/10.3390/BIOMEDICINES9121780

  77. Volz A, Sutter G (2017) Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv Virus Res 97:187–243. https://doi.org/10.1016/BS.AIVIR.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  78. Kubinski M, Beicht J, Zdora I et al (2023) A recombinant Modified Vaccinia virus Ankara expressing prME of tick-borne encephalitis virus affords mice full protection against TBEV infection. Front Immunol 14. https://doi.org/10.3389/FIMMU.2023.1182963

  79. Bruneau RC, Tazi L, Rothenburg S, Cowpox Viruses A Zoo Full of Viral Diversity and Lurking Threats. Biomolecules [Internet]. 2023 Feb 8 [cited 2023 Aug 9];13(2):325. Available from: https://www.mdpi.com/2218-273X/13/2/325

  80. Derrick Baxby. The Natural History of Cowpox, The substance of the Jenner Lecture, read 17th May 1982 in Bristol Royal Infirmary under the auspices of the Jenner Trust. Bristol Medico-Chir J January April 1982.

  81. Diaz-Cánova D, Mavian C, Brinkmann A, Nitsche A, Moens U, Okeke MI (2022) Genomic Sequencing and Phylogenomics of Cowpox Virus. Viruses 14(10):2134

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bruneau RC, Tazi L, Rothenburg S (2023) Cowpox Viruses: A Zoo Full of Viral Diversity and Lurking Threats. Biomolecules 13(2):325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Grange ZL, Goldstein T, Johnson CK, Anthony S, Gilardi K, Daszak P et al Ranking the risk of animal-to-human spillover for newly discovered viruses. Proc Natl Acad Sci [Internet]. 2021 Apr 13 [cited 2023 Aug 9];118(15):e2002324118. https://doi.org/10.1073/pnas.2002324118

  84. Essbauer S, Pfeffer M, Meyer H Zoonotic poxviruses. Vet Microbiol [Internet]. 2010 Jan [cited 2023 Aug 8];140(3–4):229–36. https://linkinghub.elsevier.com/retrieve/pii/S0378113509003988

  85. Singh RK, Balamurugan V, Bhanuprakash V, Venkatesan G, Hosamani M (2012) Emergence and reemergence of vaccinia-like viruses: global scenario and perspectives. Indian J Virol 23:1–1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moussatché N, Damaso CR, McFadden G (2008) When good vaccines go wild: Feral Orthopoxvirus in developing countries and beyond. J Infect Dev Ctries 2(3):156–173. https://doi.org/10.3855/jidc.258

    Article  PubMed  Google Scholar 

  87. Zafar A, Swanepoel R, Hewson R, Nizam M, Ahmed A, Husain A et al Nosocomial Buffalopoxvirus Infection, Karachi, Pakistan. Emerg Infect Dis [Internet]. 2007 Jun [cited 2023 Aug 9];13(6):902–904. https://doi.org/10.3201%2Feid1306.061068

  88. Mercer AA, Schmidt A, Weber OF, Poxviruses (2007) Basel: Birkhäuser Verlag; (Birkhäuser advances in infectious diseases).

  89. Tryland M, Beckmen KB, Burek-Huntington KA, Breines EM, Klein J (2018) Orf virus infection in Alaskan mountain goats, Dall’s sheep, muskoxen, caribou and Sitka black-tailed deer. Acta Vet Scand 60(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  90. Berry AH (1901) Contagious pustular dermatitis of sheep. J Comp Pathol Ther 14:307–312

    Article  Google Scholar 

  91. Coradduzza E, Sanna D, Scarpa F, Azzena I, Fiori MS, Scivoli R et al (1999) A Deeper Insight into Evolutionary Patterns and Phylogenetic History of ORF Virus through the Whole Genome Sequencing of the First Italian Strains. Viruses [Internet]. 2022 Jul 4 [cited 2023 Aug 13];14(7):1473. Available from: https://www.mdpi.com/-4915/14/7/1473

  92. Hosamani M, Scagliarini A, Bhanuprakash V, McInnes CJ, Singh RK Orf: an update on current research and future perspectives. Expert Rev Anti Infect Ther [Internet]. 2009 Sep [cited 2023 Aug 13];7(7):879–93. Available from: http://www.tandfonline.com/doi/full/https://doi.org/10.1586/eri.09.64

  93. Haig DM, Mercer AA (1998) Ovine diseases. Orf. Vet Res 29(3–4):311–326

    CAS  PubMed  Google Scholar 

  94. Bergqvist C, Kurban M, Abbas O (1932) Orf virus infection. Rev Med Virol [Internet]. 2017 Jul [cited 2023 Aug 13];27(4):e Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/rmv.1932

  95. Fraser CM, Savan M (1962) Bovine Papular Stomatitis. Can Vet J 3(4):107–111

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dinter Z, Morein B (eds) (1990) Virus infections of ruminants. Amsterdam; New York: New York, NY, U.S.A: Elsevier Science; Distributors for the United States and Canada, Elsevier Science Pub. Co; 572 p. (Virus infections of vertebrates)

  97. Jezek Z, Arita I, Szczeniowski M, Paluku KM, Ruti K, Nakano JH (1985) Human tanapox in Zaire: clinical and epidemiological observations on cases confirmed by laboratory studies. Bull World Health Organ 63(6):1027–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Downie AW, España C (1972) Comparison of Tanapox virus and Yaba-like viruses causing epidemic disease in monkeys. J Hyg (Lond) 70(1):23–32. https://doi.org/10.1017/s0022172400022051

    Article  CAS  PubMed  Google Scholar 

  99. McNulty WP Jr, Lobitz WC Jr, Hu F, Maruffo CA, Hall AS (1968) A pox disease in monkeys transmitted to man. Clinical and histological features. Arch Dermatol 97(3):286–293

    Article  PubMed  Google Scholar 

  100. Hall AS, McNulty WP Jr. (1967) A contagious pox disease in monkeys. J Am Vet Med Assoc 151(7):833–838

    CAS  PubMed  Google Scholar 

  101. Croitoru AG, Birge MB, Rudikoff D, Tan MH, Phelps RG (2002) Tanapox virus infection. Skinmed 1(2):156–157. https://doi.org/10.1111/j.1540-9740.2002.01778.x

    Article  PubMed  Google Scholar 

  102. Petersen B, Damon I Other Poxviruses that infect humans: Parapoxviruses (including Orf Virus), Molluscum Contagiosum and Yatapoxviruses. In: Bennett JE, Dolin R, Blaser MJ (eds) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. Amsterdam: Elsevier, pp. 1694–1702e3

  103. Juliusberg M (1905) Zur Kenntnis des virus des Molluscum contagiosum. Dtsch Med Wochenschr 2013:1598–1599

    Article  Google Scholar 

  104. Torres A (1986) The molluscum body. The Henderson-Paterson body with Lipschütz granules. Am J Dermatopathol 8(3):260–262. https://doi.org/10.1097/00000372-198606000-00015

    Article  CAS  PubMed  Google Scholar 

  105. Senkevich TG, Koonin EV, Bugert JJ, Darai G, Moss B (1997) The genome of molluscum contagiosum virus: analysis and comparison with other poxviruses. Virology 233(1):19–42. https://doi.org/10.1006/viro.1997.8607

    Article  CAS  PubMed  Google Scholar 

  106. Birthistle K, Carrington D (1997) Molluscum contagiosum virus. J Infect 34(1):21–28. https://doi.org/10.1016/s0163-4453(97)80005-9

    Article  CAS  PubMed  Google Scholar 

  107. Haller SL, Peng C, McFadden G, Rothenburg S (2014) Poxviruses and the evolution of host range and virulence. Infect Genet Evol 21:15–40. https://doi.org/10.1016/j.meegid.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  108. Damaso CR, Esposito JJ, Condit RC, Moussatché N (2000) An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. Virology 277(2):439–449

    Article  CAS  PubMed  Google Scholar 

  109. Medaglia ML, Moussatché N, Nitsche A, Dabrowski PW, Li Y, Damon IK, Lucas CG, Arruda LB, Damaso CR (2015) Genomic analysis, phenotype, and virulence of the historical Brazilian smallpox vaccine strain IOC: implications for the origins and evolutionary relationships of vaccinia virus. J Virol 89(23):11909–11925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. MacNeill AL (2022) Comparative Pathology of Zoonotic Orthopoxviruses. Pathogens 11(8):892 Published 2022 Aug 9. https://doi.org/10.3390/pathogens11080892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwini MA.

Ethics declarations

Ethical approval:

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest:

All authors declare that they have no conflict of interest.

Additional information

Communicated by T. K. Frey

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddalingaiah, N., Dhanya, K., Lodha, L. et al. Tracing the journey of poxviruses: insights from history. Arch Virol 169, 37 (2024). https://doi.org/10.1007/s00705-024-05971-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-024-05971-2

Navigation