Skip to main content

Advertisement

Log in

Using molecular methods to delineate norovirus outbreaks: a systematic review

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Noroviruses are among the major causative agents of human acute gastroenteritis, and the nature of norovirus outbreaks can differ considerably. The number of single-nucleotide polymorphisms (SNPs) between strains is used to assess their relationships. There is currently no universally accepted cutoff value for clustering strains that define an outbreak or linking the individuals involved. This study was conducted to estimate the threshold value of genomic variations among related strains within norovirus outbreaks. We carried out a literature search in the PubMed and Web of Science databases. SNP rates were defined as the number of SNPs/sequence length (bp) × 100%. The Mann-Whitney U-test was used in comparisons of the distribution of SNP rates for different sequence regions, genogroups (GI and GII), transmission routes, and sequencing methods. A total of 25 articles reporting on 108 norovirus outbreaks were included. In 99.1% of the outbreaks, the SNP rates were below 0.50%, and in 89.8%, the SNP rates were under 0.20%. Outbreak strains showed higher SNP rates when the P2 domain was used for sequence analysis (Z = -2.652, p = 0.008) and when an NGS method was used (Z = -3.686, p < 0.001). Outbreaks caused by different norovirus genotypes showed no significant difference in SNP rates. Compared with person-to-person outbreaks, SNP rates were lower in common-source outbreaks, but no significant difference was found when differences in sequencing methods were taken into consideraton. SNP rates under 0.20% and 0.50% could be considered as the rigorous and relaxed threshold, respectively, of strain similarity within a norovirus outbreak. More data are needed to evaluate differences within and between various norovirus outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, Koopmans M, Lopman BA (2014) Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect Dis 14:725–730. https://doi.org/10.1016/S1473-3099(14)70767-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bartsch SM, Lopman BA, Ozawa S, Hall AJ, Lee BY (2016) Global Economic Burden of Norovirus Gastroenteritis. PLoS ONE 11:e0151219. https://doi.org/10.1371/journal.pone.0151219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xi JN, Graham DY, Wang KN, Estes MK (1990) Norwalk virus genome cloning and characterization. Science 250:1580–1583. https://doi.org/10.1126/science.2177224

    Article  CAS  PubMed  Google Scholar 

  4. Hardy ME (2005) Norovirus protein structure and function. FEMS Microbiol Lett 253:1–8. https://doi.org/10.1016/j.femsle.2005.08.031

    Article  CAS  PubMed  Google Scholar 

  5. Steinhauer DA, Domingo E, Holland JJ (1992) Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene 122:281–288. https://doi.org/10.1016/0378-1119(92)90216-c

    Article  CAS  PubMed  Google Scholar 

  6. Smith EC, Sexton NR, Denison MR (2014) Thinking Outside the Triangle: Replication Fidelity of the Largest RNA Viruses. Annu Rev Virol 1:111–132. https://doi.org/10.1146/annurev-virology-031413-085507

    Article  CAS  PubMed  Google Scholar 

  7. Tan M, Huang P, Meller J, Zhong W, Farkas T, Jiang X (2003) Mutations within the P2 domain of norovirus capsid affect binding to human histo-blood group antigens: evidence for a binding pocket. J Virol 77:12562–12571. https://doi.org/10.1128/jvi.77.23.12562-12571.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao S, Lou Z, Tan M, Chen Y, Liu Y, Zhang Z, Zhang XC, Jiang X, Li X, Rao Z (2007) Structural basis for the recognition of blood group trisaccharides by norovirus. J Virol 81:5949–5957. https://doi.org/10.1128/JVI.00219-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lochridge VP, Hardy ME (2007) A single-amino-acid substitution in the P2 domain of VP1 of murine norovirus is sufficient for escape from antibody neutralization. J Virol 81:12316–12322. https://doi.org/10.1128/JVI.01254-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cates JE, Vinjé J, Parashar U, Hall AJ (2020) Recent advances in human norovirus research and implications for candidate vaccines. Expert Rev Vaccines 19:539–548. https://doi.org/10.1080/14760584.2020.1777860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chhabra P, de Graaf M, Parra GI, Chan MC, Green K, Martella V, Wang Q, White PA, Katayama K, Vennema H, Koopmans MPG, Vinjé J (2019) Updated classification of norovirus genogroups and genotypes. J Gen Virol 100:1393–1406. https://doi.org/10.1099/jgv.0.001318

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liao Q, Ran L, Jin M, Cui S, Yuan J, Ma H, Ban H, Sun L, Luo L, Liu N, Duan Z, Yu H (2016) [Guidelines on outbreak investigation, prevention and control of norovirus infection (2015)]. Zhonghua Yu Fang Yi Xue Za Zhi 50:7–16. https://doi.org/10.3760/cma.j.issn.0253-9624.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  13. Bonifait L, Charlebois R, Vimont A, Turgeon N, Veillette M, Longtin Y, Jean J, Duchaine C (2015) Detection and quantification of airborne norovirus during outbreaks in healthcare facilities. Clin Infect Dis 61:299–304. https://doi.org/10.1093/cid/civ321

    Article  PubMed  Google Scholar 

  14. Maunula L, Kaupke A, Vasickova P, Söderberg K, Kozyra I, Lazic S, van der Poel WH, Bouwknegt M, Rutjes S, Willems KA, Moloney R, D'Agostino M, de Roda Husman AM, von Bonsdorff CH, Rzeżutka A, Pavlik I, Petrovic T, Cook N (2013) Tracing enteric viruses in the European berry fruit supply chain. Int J Food 167:177–185. https://doi.org/10.1016/j.ijfoodmicro.2013.09.003

    Article  Google Scholar 

  15. Sukhrie FH, Beersma MF, Wong A, van der Veer B, Vennema H, Bogerman J, Koopmans M (2011) Using molecular epidemiology to trace transmission of nosocomial norovirus infection. J Clin Microbiol 49:602–606

    Article  PubMed  PubMed Central  Google Scholar 

  16. Höhne M, Niendorf S, Mas Marques A, Bock CT (2015) Use of sequence analysis of the P2 domain for characterization of norovirus strains causing a large multistate outbreak of norovirus gastroenteritis in Germany 2012. Int J Med Microbiol 305:612–618. https://doi.org/10.1016/j.ijmm.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  17. Sukhrie FH, Teunis P, Vennema H, Bogerman J, van Marm S, Beersma MF, Koopmans M (2013) P2 domain profiles and shedding dynamics in prospectively monitored norovirus outbreaks. J Clin Virol 56:286–292. https://doi.org/10.1016/j.jcv.2012.12.006

    Article  PubMed  Google Scholar 

  18. Xerry J, Gallimore CI, Iturriza-Gómara M, Gray JJ (2009) Tracking the transmission routes of genogroup II noroviruses in suspected food-borne or environmental outbreaks of gastroenteritis through sequence analysis of the P2 domain. J Med Virol 81:1298–1304. https://doi.org/10.1002/jmv.21517

    Article  CAS  PubMed  Google Scholar 

  19. Casto AM, Adler AL, Makhsous N, Crawford K, Qin X, Kuypers JM, Huang ML, Zerr DM, Greninger AL (2019) Prospective, Real-time Metagenomic Sequencing During Norovirus Outbreak Reveals Discrete Transmission Clusters. Clin Infect Dis 69:941–948. https://doi.org/10.1093/cid/ciy1020

    Article  CAS  PubMed  Google Scholar 

  20. Stimson J, Gardy J, Mathema B, Crudu V, Cohen T, Colijn C (2019) Beyond the SNP Threshold: Identifying Outbreak Clusters Using Inferred Transmissions. Mol Biol Evol 36:587–603. https://doi.org/10.1093/molbev/msy242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Octavia S, Wang Q, Tanaka MM, Kaur S, Sintchenko V, Lan R (2015) Delineating community outbreaks of Salmonella enterica serovar Typhimurium by use of whole-genome sequencing: insights into genomic variability within an outbreak. J Clin Microbiol 53:1063–1071. https://doi.org/10.1128/JCM.03235-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hatherell HA, Colijn C, Stagg HR, Jackson C, Winter JR, Abubakar I (2016) Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review. BMC Med 14:21. https://doi.org/10.1186/s12916-016-0566-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Humphreys H, Coleman DC (2019) Contribution of whole-genome sequencing to understanding of the epidemiology and control of meticillin-resistant Staphylococcus aureus. J Hosp Infect 102:189–199. https://doi.org/10.1016/j.jhin.2019.01.025

    Article  CAS  PubMed  Google Scholar 

  24. Smith CR, Enns C, Cutfeet D, Alfred S, James N, Lindbeck J, Russell S (2021) COVID-19 in a remote First Nations community in British Columbia, Canada: an outbreak report. CMAJ open 9:E1073–E1079. https://doi.org/10.9778/cmajo.20210054

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xue KS, Bloom JD (2020) Linking influenza virus evolution within and between human hosts. Virus Evol 6:veaa010. https://doi.org/10.1093/ve/veaa010

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lorenzo-Redondo R, Ozer EA, Achenbach CJ, D'Aquila RT, Hultquist JF (2021) Molecular epidemiology in the HIV and SARS-CoV-2 pandemics. Curr Opin HIV AIDS 16:11–24. https://doi.org/10.1097/COH.0000000000000660

    Article  CAS  PubMed  Google Scholar 

  27. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  28. Field N, Cohen T, Struelens MJ, Palm D, Cookson B, Glynn JR, Gallo V, Ramsay M, Sonnenberg P, Maccannell D, Charlett A, Egger M, Green J, Vineis P, Abubakar I (2014) Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID): an extension of the STROBE statement. Lancet Infect Dis 14:341–352. https://doi.org/10.1016/S1473-3099(13)70324-4

    Article  PubMed  Google Scholar 

  29. Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (2011) Updated norovirus outbreak management and disease prevention guidelines. MMWR Recomm Rep 60:1–18

    Google Scholar 

  30. Schwartz S, Vergoulidou M, Schreier E, Loddenkemper C, Reinwald M, Schmidt-Hieber M, Flegel WA, Thiel E, Schneider T (2011) Norovirus gastroenteritis causes severe and lethal complications after chemotherapy and hematopoietic stem cell transplantation. Blood 117:5850–5856. https://doi.org/10.1182/blood-2010-12-325886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sukhrie FH, Teunis P, Vennema H, Bogerman J, van Marm S, Beersma MF, Koopmans M (2013) P2 domain profiles and shedding dynamics in prospectively monitored norovirus outbreaks. J Clin Virol 56:286–292. https://doi.org/10.1016/j.jcv.2012.12.006

    Article  PubMed  Google Scholar 

  32. Fonager J, Stegger M, Rasmussen LD, Poulsen MW, Rønn J, Andersen PS, Fischer TK (2017) A universal primer-independent next-generation sequencing approach for investigations of norovirus outbreaks and novel variants. Sci Rep 7:813. https://doi.org/10.1038/s41598-017-00926-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hasing ME, Hazes B, Lee BE, Preiksaitis JK, Pang XL (2016) A next generation sequencing-based method to study the intra-host genetic diversity of norovirus in patients with acute and chronic infection. BMC Genomics 1;17:480. https://doi.org/10.1186/s12864-016-2831-y

  34. Nasheri N, Petronella N, Ronholm J, Bidawid S, Corneau N (2017) Characterization of the Genomic Diversity of Norovirus in Linked Patients Using a Metagenomic Deep Sequencing Approach. Front Microbiol 31:8:73. https://doi.org/10.3389/fmicb.2017.00073

    Article  Google Scholar 

  35. Gilles A, Meglécz E, Pech N, Ferreira S, Malausa T, Martin JF (2011) Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics 19:12:245. https://doi.org/10.1186/1471-2164-12-245

    Article  Google Scholar 

  36. Lopman B, Vennema H, Kohli E, Pothier P, Sanchez A, Negredo A, Buesa J, Schreier E, Reacher M, Brown D, Gray J, Iturriza M, Gallimore C, Bottiger B, Hedlund KO, Torvén M, von Bonsdorff CH, Maunula L, Poljsak-Prijatelj M, Zimsek J, Reuter G, Szücs G, Melegh B, Svennson L, van Duijnhoven Y, Koopmans M (2004) Increase in viral gastroenteritis outbreaks in Europe and epidemic spread of new norovirus variant. Lancet 363:682–688. https://doi.org/10.1016/S0140-6736(04)15641-9

    Article  PubMed  Google Scholar 

  37. Eden JS, Bull RA, Tu E, McIver CJ, Lyon MJ, Marshall JA, Smith DW, Musto J, Rawlinson WD, White PA (2010) Norovirus GII.4 variant 2006b caused epidemics of acute gastroenteritis in Australia during 2007 and 2008. J Clin Virol 49:265–271. https://doi.org/10.1016/j.jcv.2010.09.001

    Article  PubMed  Google Scholar 

  38. Yen C, Wikswo ME, Lopman BA, Vinje J, Parashar UD, Hall AJ (2011) Impact of an emergent norovirus variant in 2009 on norovirus outbreak activity in the United States. Clin Infect Dis 53:568–571. https://doi.org/10.1093/cid/cir478

    Article  PubMed  Google Scholar 

  39. Burke RM, Shah MP, Wikswo ME, Barclay L, Kambhampati A, Marsh Z, Cannon JL, Parashar UD, Vinjé J, Hall AJ (2016) The Norovirus Epidemiologic Triad: Predictors of Severe Outcomes in US Norovirus Outbreaks, 2009–2016. J Infect Dis 219:1364–1372. https://doi.org/10.1093/infdis/jiy569

    Article  Google Scholar 

  40. Parra GI, Squires RB, Karangwa CK, Johnson JA, Lepore CJ, Sosnovtsev SV, Green KY (2017) Static and Evolving Norovirus Genotypes: Implications for Epidemiology and Immunity. PLoS Pathog 13:e1006136. https://doi.org/10.1371/journal.ppat.1006136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dingle KE, Norovirus Infection Control in Oxfordshire Communities Hospitals (2004) Mutation in a Lordsdale norovirus epidemic strain as a potential indicator of transmission routes. J Clin Microbiol 42:3950–3957. https://doi.org/10.1128/JCM.42.9.3950-3957.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bull RA, Eden JS, Luciani F, McElroy K, Rawlinson WD, White PA (2012) Contribution of intra- and interhost dynamics to norovirus evolution. J Virol 86:3219–3229. https://doi.org/10.1128/JVI.06712-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Octavia S, Wang Q, Tanaka MM, Kaur S, Sintchenko V, Lan R (2015) Delineating community outbreaks of Salmonella enterica serovar Typhimurium by use of whole-genome sequencing: insights into genomic variability within an outbreak. J Clin Microbiol 53:1063–1071. https://doi.org/10.1128/JCM.03235-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, Eyre DW, Wilson DJ, Hawkey PM, Crook DW, Parkhill J, Harris D, Walker AS, Bowden R, Monk P, Smith EG, Peto TE (2013) Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 13:137–146. https://doi.org/10.1016/S1473-3099(12)70277-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Medical Scientific Research Project of Jiangsu Provincial Health Commission (grant number H2019019).

Author information

Authors and Affiliations

Authors

Contributions

L.T., X.Z., X.W.: literature review, data extraction. L.T., J.D.: methodology. L.T.: software, formal analysis, visualization, writing – original draft. J.D.: conceptualization, project administration, funding acquisition, supervision, validation, writing – review & editing.

Corresponding author

Correspondence to Jie Ding.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Akbar Dastjerdi

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, L., Zhang, X., Wang, X. et al. Using molecular methods to delineate norovirus outbreaks: a systematic review. Arch Virol 169, 16 (2024). https://doi.org/10.1007/s00705-023-05953-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05953-w

Keywords

Navigation