Skip to main content
Log in

Identification of small circular DNA viruses in coyote fecal samples from Arizona (USA)

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Coyotes (Canis latrans) have a broad geographic distribution across North and Central America. Despite their widespread presence in urban environments in the USA, there is limited information regarding viruses associated with coyotes in the USA and in particular the state of Arizona. To explore viruses associated with coyotes, particularly small DNA viruses, 44 scat samples were collected (April–June 2021 and November 2021–January 2022) along the Salt River near Phoenix, Arizona (USA), along 43 transects (500 m). From these samples, we identified 11 viral genomes: two novel circoviruses, six unclassified cressdnaviruses, and two anelloviruses. One of the circoviruses is most closely related to a circovirus sequence identified from an aerosolized dust sample in Arizona, USA. The second circovirus is most closely related to a rodent-associated circovirus and canine circovirus. Of the unclassified cressdnaviruses, three encode replication-associated proteins that are similar to those found in protists (Histomonas meleagridis and Monocercomonoides exilis), implying an evolutionary relationship with or a connection to similar unidentified protist hosts. The two anelloviruses are most closely related to those found in rodents, and this suggests a diet-related identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The sequences described in this study have been deposited in the GenBank database under accession numbers OQ599920-OQ599930.

References

  1. Bateman PW, Fleming PA, Le Comber S (2012) Big city life: carnivores in urban environments. J Zool 287:1–23

    Article  Google Scholar 

  2. Hody JW, Kays R (2018) Mapping the expansion of coyotes (Canis latrans) across North and Central America. Zookeys 759:81–97

    Article  Google Scholar 

  3. Snow CJ (1967) Some observations on the behavioral and morphological development of coyote pups. Am Zool 7:353–355

    Article  Google Scholar 

  4. Clark KA, Neill SU, Smith JS, Wilson PJ, Whadford VW, McKirahan GW (1994) Epizootic canine rabies transmitted by coyotes in south Texas. J Am Vet Med Assoc 204:536–540

    Article  CAS  PubMed  Google Scholar 

  5. Morey PS, Gese EM, Gehrt S (2007) Spatial and temporal variation in the diet of coyotes in the chicago metropolitan area. Am Midl Nat 158:147–161

    Article  Google Scholar 

  6. Poessel SA, Mock EC, Breck SW (2017) Coyote (Canis latrans) diet in an urban environment: variation relative to pet conflicts, housing density, and season. Can J Zool 95:287–297

    Article  Google Scholar 

  7. Sacks BN, Neale JCC (2002) Foraging strategy of a generalist predator toward a special prey: coyote predation on sheep. Ecol Appl 12:299–306

    Article  Google Scholar 

  8. Ma X, Bonaparte S, Corbett P, Orciari LA, Gigante CM, Kirby JD, Chipman RB, Fehlner-Gardiner C, Thang C, Cedillo VG (2023) Rabies surveillance in the United States during 2021. J Am Vet Med Assoc 261:1045–1053

    PubMed  Google Scholar 

  9. Krebs JW, Noll HR, Rupprecht CE, Childs JE (2002) Rabies surveillance in the United States during 2001. J Am Vet Med Assoc 221:1690–1701

    Article  PubMed  Google Scholar 

  10. Blanton JD, Robertson K, Palmer D, Rupprecht CE (2009) Rabies surveillance in the United States during 2008. J Am Vet Med Assoc 235:676–689

    Article  PubMed  Google Scholar 

  11. Malmlov A, Breck S, Fry T, Duncan C (2014) Serologic survey for cross-species pathogens in urban coyotes (Canis latrans), Colorado, USA. J Wildl Dis 50:946–950

    Article  PubMed  Google Scholar 

  12. Wang X, Brown CM, Smole S, Werner BG, Han L, Farris M, DeMaria A (2010) Aggression and rabid coyotes, Massachusetts, USA. Emerg Infect Dis 16:357–359

    Article  PubMed  PubMed Central  Google Scholar 

  13. Velasco-Villa A, Orciari LA, Souza V, Juarez-Islas V, Gomez-Sierra M, Castillo A, Flisser A, Rupprecht CE (2005) Molecular epizootiology of rabies associated with terrestrial carnivores in Mexico. Virus Res 111:13–27

    Article  CAS  PubMed  Google Scholar 

  14. Gese EM, Schultz RD, Johnson MR, Williams ES, Crabtree RL, Ruff RL (1997) Serological survey for diseases in free-ranging coyotes (Canis latrans) in Yellowstone National Park, Wyoming. J Wildl Dis 33:47–56

    Article  CAS  PubMed  Google Scholar 

  15. Bischof R, Rogers DG (2005) Serologic survey of select infectious diseases in coyotes and raccoons in Nebraska. J Wildl Dis 41:787–791

    Article  PubMed  Google Scholar 

  16. Guo W, Evermann JF, Foreyt WJ, Knowlton FF, Windberg LA (1986) Canine distemper virus in coyotes: a serologic survey. J Am Vet Med Assoc 189:1099–1100

    CAS  PubMed  Google Scholar 

  17. Allison AB, Kohler DJ, Ortega A, Hoover EA, Grove DM, Holmes EC, Parrish CR (2014) Host-specific parvovirus evolution in nature is recapitulated by in vitro adaptation to different carnivore species. PLoS Pathog 10:e1004475

    Article  PubMed  PubMed Central  Google Scholar 

  18. Canuti M, Mira F, Sorensen RG, Rodrigues B, Bouchard E, Walzthoni N, Hopson M, Gilroy C, Whitney HG, Lang AS (2022) Distribution and diversity of dog parvoviruses in wild, free-roaming and domestic canids of Newfoundland and Labrador, Canada. Transbound Emerg Dis 69:e2694–e2705

    Article  CAS  PubMed  Google Scholar 

  19. Canuti M, Rodrigues B, Whitney HG, Lang AS (2017) Introduction of canine parvovirus 2 into wildlife on the Island of Newfoundland, Canada. Infect Genet Evol 55:205–208

    Article  PubMed  Google Scholar 

  20. Gese EM, Grothe S (1995) Analysis of coyote predation on deer and elk during winter in Yellowstone National Park, Wyoming. Am Midl Nat 133:36–43

    Article  Google Scholar 

  21. Pluemer M, Dubay S, Drake D, Crimmins S, Veverka T, Hovanec H, Torkelson M, Mueller M (2019) Red foxes (Vulpes vulpes) and coyotes (Canis latrans) in an urban landscape: prevalence and risk factors for disease. J Urban Ecol. https://doi.org/10.1093/jue/juz022

    Article  Google Scholar 

  22. Brown JL, Wold B, Larson RN (2020) LA urban coyote project volunteer training. https://doi.org/10.17504/protocols.io.933h8qn

  23. Morin DJ, Higdon SD, Lonsinger RC, Gosselin EN, Kelly MJ, Waits LP (2019) Comparing methods of estimating carnivore diets with uncertainty and imperfect detection. Wildl Soc Bull 43:651–660

    Article  Google Scholar 

  24. Debelica A, Thies ML (2009) Atlas and key to the hair of terrestrial Texas mammals. Museum of Texas Tech University, Lubbock

    Book  Google Scholar 

  25. Larson RN, Brown JL, Karels T, Riley SP (2020) Effects of urbanization on resource use and individual specialization in coyotes (Canis latrans) in southern California. PLoS ONE 15:e0228881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moore TD, Spence LE, Dugnolle CE (1997) Identification of the dorsal guard hairs of some mammals of Wyoming. Wyoming Game and Fish Department

  27. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, Yamashita H, Lam TW (2016) MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102:3–11

    Article  CAS  PubMed  Google Scholar 

  29. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  30. Zallot R, Oberg N, Gerlt JA (2019) The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58:4169–4182

    Article  CAS  PubMed  Google Scholar 

  31. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Letunic I, Bork P (2021) Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    Article  CAS  PubMed  Google Scholar 

  37. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  38. Stover BC, Muller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform 11:7

    Article  Google Scholar 

  39. Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 9:e108277

    Article  PubMed  PubMed Central  Google Scholar 

  40. Krupovic M, Varsani A, Kazlauskas D, Breitbart M, Delwart E, Rosario K, Yutin N, Wolf YI, Harrach B, Zerbini FM, Dolja VV, Kuhn JH, Koonin EV (2020) Cressdnaviricota: a virus phylum unifying seven families of rep-encoding viruses with single-stranded, circular DNA genomes. J Virol 94:e00582-00520

    Article  Google Scholar 

  41. Ilyina TV, Koonin EV (1992) Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from Eubacteria, Eucaryotes and Archaebacteria. Nucleic Acids Res 20:3279–3285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koonin EV, Ilyina TV (1993) Computer-assisted dissection of rolling circle DNA replication. Biosystems 30:241–268

    Article  CAS  PubMed  Google Scholar 

  43. Rosario K, Duffy S, Breitbart M (2012) A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch Virol 157:1851–1871

    Article  CAS  PubMed  Google Scholar 

  44. Zhao L, Rosario K, Breitbart M, Duffy S (2019) Eukaryotic circular rep-encoding single-stranded DNA (CRESS DNA) viruses: ubiquitous viruses with small genomes and a diverse host range. Adv Virus Res 103:71–133

    Article  CAS  PubMed  Google Scholar 

  45. Kazlauskas D, Varsani A, Krupovic M (2018) Pervasive chimerism in the replication-associated proteins of uncultured single-stranded DNA viruses. Viruses 10:187

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kazlauskas D, Varsani A, Koonin EV, Krupovic M (2019) Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat Commun 10:3425

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tisza MJ, Pastrana DV, Welch NL, Stewart B, Peretti A, Starrett GJ, Pang Y-YS, Krishnamurthy SR, Pesavento PA, McDermott DH, Murphy PM, Whited JL, Miller B, Brenchley J, Rosshart SP, Rehermann B, Doorbar J, Ta’ala BA, Pletnikova O, Troncoso JC, Resnick SM, Bolduc B, Sullivan MB, Varsani A, Segall AM, Buck CB (2020) Discovery of several thousand highly diverse circular DNA viruses. Elife 9:e51971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kinsella CM, Deijs M, Becker C, Broekhuizen P, van Gool T, Bart A, Schaefer AS, van der Hoek L (2022) Host prediction for disease-associated gastrointestinal cressdnaviruses. Virus Evol 8:vea087

    Article  Google Scholar 

  49. Chrzastek K, Kraberger S, Schmidlin K, Fontenele RS, Kulkarni A, Chappell L, Dufour-Zavala L, Kapczynski DR, Varsani A (2021) Diverse single-stranded DNA viruses identified in chicken buccal swabs. Microorganisms 9:2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harding C, Larsen BB, Otto HW, Potticary AL, Kraberger K, Custer JM, Suazo C, Upham NS, Worobey M, van Doorslaer K, Varsani A (2022) Diverse DNA virus genomes identified in fecal samples of Mexican free-tailed bats (Tadarida brasiliensis) captured in Chiricahua Mountains of southeast Arizona (USA). Virology 580:98–111

    Article  Google Scholar 

  51. Lund MC, Larsen BB, Rowsey DM, Otto HW, Gryseels S, Kraberger S, Custer JM, Steger L, Yule KM, Harris RE, Worobey M, Van Doorslaer K, Upham NS, Varsani A (2023) Using archived and biocollection samples towards deciphering the DNA virus diversity associated with rodent species in the families Cricetidae and Heteromyidae. Virology 585:42–60

    Article  CAS  PubMed  Google Scholar 

  52. Rosario K, Breitbart M, Harrach B, Segales J, Delwart E, Biagini P, Varsani A (2017) Revisiting the taxonomy of the family Circoviridae: establishment of the genus Cyclovirus and removal of the genus Gyrovirus. Arch Virol 162:1447–1463

    Article  CAS  PubMed  Google Scholar 

  53. Breitbart M, Delwart E, Rosario K, Segales J, Varsani A, Ictv Report C (2017) ICTV virus taxonomy profile: Circoviridae. J Gen Virol 98:1997–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pass DA, Perry RA (1984) The pathology of psittacine beak and feather disease. Aust Vet J 61:69–74

    Article  CAS  PubMed  Google Scholar 

  55. Meng XJ (2013) Porcine circovirus type 2 (PCV2): pathogenesis and interaction with the immune system. Annu Rev Anim Biosci 1:43–64

    Article  PubMed  Google Scholar 

  56. Gomez-Betancur D, Vargas-Bermudez DS, Giraldo-Ramírez S, Jaime J, Ruiz-Saenz J (2023) Canine circovirus: an emerging or an endemic undiagnosed enteritis virus? Front Vet Sci 10:1150636

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hsu HS, Lin TH, Wu HY, Lin LS, Chung CS, Chiou MT, Lin CN (2016) High detection rate of dog circovirus in diarrheal dogs. BMC Vet Res 12:116

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kapoor A, Dubovi EJ, Henriquez-Rivera JA, Lipkin WI (2012) Complete genome sequence of the first canine circovirus. J Virol 86:7018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li L, McGraw S, Zhu K, Leutenegger CM, Marks SL, Kubiski S, Gaffney P, Dela Cruz FN Jr, Wang C, Delwart E, Pesavento PA (2013) Circovirus in tissues of dogs with vasculitis and hemorrhage. Emerg Infect Dis 19:534–541

    Article  PubMed  PubMed Central  Google Scholar 

  60. Piewbang C, Jo WK, Puff C, van der Vries E, Kesdangsakonwut S, Rungsipipat A, Kruppa J, Jung K, Baumgartner W, Techangamsuwan S, Ludlow M, Osterhaus A (2018) Novel canine circovirus strains from Thailand: evidence for genetic recombination. Sci Rep 8:7524

    Article  PubMed  PubMed Central  Google Scholar 

  61. Anderson A, Hartmann K, Leutenegger CM, Proksch AL, Mueller RS, Unterer S (2017) Role of canine circovirus in dogs with acute haemorrhagic diarrhoea. Vet Rec 180:542

    Article  CAS  PubMed  Google Scholar 

  62. Finn DR, Maldonado J, de Martini F, Yu J, Penton CR, Fontenele RS, Schmidlin K, Kraberger S, Varsani A, Gile GH, Barker B, Kollath DR, Muenich RL, Herckes P, Fraser M, Garcia-Pichel F (2021) Agricultural practices drive biological loads, seasonal patterns and potential pathogens in the aerobiome of a mixed-land-use dryland. Sci Total Environ 798:149239

    Article  CAS  PubMed  Google Scholar 

  63. Cerna GM, Serieys LEK, Riley SPD, Richet C, Kraberger S, Varsani A (2023) A circovirus and cycloviruses identified in feces of bobcats (Lynx rufus) in California. Arch Virol 168:23

    Article  CAS  PubMed  Google Scholar 

  64. Wu Z, Lu L, Du J, Yang L, Ren X, Liu B, Jiang J, Yang J, Dong J, Sun L, Zhu Y, Li Y, Zheng D, Zhang C, Su H, Zheng Y, Zhou H, Zhu G, Li H, Chmura A, Yang F, Daszak P, Wang J, Liu Q, Jin Q (2018) Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases. Microbiome 6:178

    Article  PubMed  PubMed Central  Google Scholar 

  65. Legnardi M, Grassi L, Franzo G, Menandro ML, Tucciarone CM, Minichino A, Dipineto L, Borrelli L, Fioretti A, Cecchinato M (2022) Detection and molecular characterization of a novel species of circovirus in a tawny owl (Strix aluco) in Southern Italy. Animals (Basel) 12:135

    Article  PubMed  Google Scholar 

  66. Wu Z, Yang L, Ren X, He G, Zhang J, Yang J, Qian Z, Dong J, Sun L, Zhu Y, Du J, Yang F, Zhang S, Jin Q (2016) Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J 10:609–620

    Article  PubMed  Google Scholar 

  67. Payne N, Kraberger S, Fontenele RS, Schmidlin K, Bergeman MH, Cassaigne I, Culver M, Varsani A, Van Doorslaer K (2020) novel circoviruses detected in feces of sonoran felids. Viruses 12:1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tang HB, Chen F, Rao G, Bai A, Jiang J, Du Y, Ren P, Liu J, Qin S, Yang L, Wu J (2017) Characterization of Akabane virus from domestic bamboo rat, Southern China. Vet Microbiol 207:280–285

    Article  CAS  PubMed  Google Scholar 

  69. Phan TG, da Costa AC, Del Valle MJ, Bucardo-Rivera F, Nordgren J, O’Ryan M, Deng X, Delwart E (2016) The fecal virome of South and Central American children with diarrhea includes small circular DNA viral genomes of unknown origin. Arch Virol 161:959–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Siqueira JD, Dominguez-Bello MG, Contreras M, Lander O, Caballero-Arias H, Xutao D, Noya-Alarcon O, Delwart E (2018) Complex virome in feces from Amerindian children in isolated Amazonian villages. Nat Commun 9:4270

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kapusinszky B, Ardeshir A, Mulvaney U, Deng X, Delwart E (2017) Case-control comparison of enteric viromes in captive rhesus macaques with acute or idiopathic chronic diarrhea. J Virol. https://doi.org/10.1128/JVI.00952-17

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pearson VM, Caudle SB, Rokyta DR (2016) Viral recombination blurs taxonomic lines: examination of single-stranded DNA viruses in a wastewater treatment plant. PeerJ 4:e2585

    Article  PubMed  PubMed Central  Google Scholar 

  73. de la Higuera I, Kasun GW, Torrance EL, Pratt AA, Maluenda A, Colombet J, Bisseux M, Ravet V, Dayaram A, Stainton D, Kraberger S, Zawar-Reza P, Goldstien S, Briskie JV, White R, Taylor H, Gomez C, Ainley DG, Harding JS, Fontenele RS, Schreck J, Ribeiro SG, Oswald SA, Arnold JM, Enault F, Varsani A, Stedman KM (2020) unveiling crucivirus diversity by mining metagenomic data. MBio 11:10–1128

    Google Scholar 

  74. Dayaram A, Galatowitsch ML, Arguello-Astorga GR, van Bysterveldt K, Kraberger S, Stainton D, Harding JS, Roumagnac P, Martin DP, Lefeuvre P, Varsani A (2016) Diverse circular replication-associated protein encoding viruses circulating in invertebrates within a lake ecosystem. Infect Genet Evol 39:304–316

    Article  CAS  PubMed  Google Scholar 

  75. Zhao M, Yue C, Yang Z, Li Y, Zhang D, Zhang J, Yang S, Shen Q, Su X, Qi D, Ma R, Xiao Y, Hou R, Yan X, Li L, Zhou Y, Liu J, Wang X, Wu W, Zhang W, Shan T, Liu S (2022) Viral metagenomics unveiled extensive communications of viruses within giant pandas and their associated organisms in the same ecosystem. Sci Total Environ 820:153317

    Article  CAS  PubMed  Google Scholar 

  76. Wang Y, Yang S, Liu D, Zhou C, Li W, Lin Y, Wang X, Shen Q, Wang H, Li C, Zong M, Ding Y, Song Q, Deng X, Qi D, Zhang W, Delwart E (2019) The fecal virome of red-crowned cranes. Arch Virol 164:3–16

    Article  CAS  PubMed  Google Scholar 

  77. Zhao G, Vatanen T, Droit L, Park A, Kostic AD, Poon TW, Vlamakis H, Siljander H, Harkonen T, Hamalainen AM, Peet A, Tillmann V, Ilonen J, Wang D, Knip M, Xavier RJ, Virgin HW (2017) Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proc Natl Acad Sci USA 114:E6166–E6175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Orton JP, Morales M, Fontenele RS, Schmidlin K, Kraberger S, Leavitt DJ, Webster TH, Wilson MA, Kusumi K, Dolby GA, Varsani A (2020) Virus discovery in desert tortoise fecal samples: novel circular single-stranded DNA viruses. Viruses 12:13

    Article  Google Scholar 

  79. Palmieri N, de Jesus RM, Hess M, Bilic I (2021) Complete genomes of the eukaryotic poultry parasite Histomonas meleagridis: linking sequence analysis with virulence/attenuation. BMC Genom 22:753

    Article  CAS  Google Scholar 

  80. Beer LC, Petrone-Garcia VM, Graham BD, Hargis BM, Tellez-Isaias G, Vuong CN (2022) Histomonosis in poultry: a comprehensive review. Front Vet Sci 9:880738

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dayaram A, Potter KA, Pailes R, Marinov M, Rosenstein DD, Varsani A (2015) Identification of diverse circular single-stranded DNA viruses in adult dragonflies and damselflies (Insecta: Odonata) of Arizona and Oklahoma, USA. Infect Genet Evol 30:278–287

    Article  CAS  PubMed  Google Scholar 

  82. Tochetto C, Muterle Varela AP, Alves de Lima D, Loiko MR, Mengue Scheffer C, Pinto Paim W, Cerva C, Schmidt C, Cibulski SP, Cano Ortiz L, Callegari Jacques SM, Franco AC, Quoos Mayer F, Roehe PM (2020) Viral DNA genomes in sera of farrowing sows with or without stillbirths. PLoS ONE 15:e0230714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kinsella CM, Deijs M, Gittelbauer HM, van der Hoek L, van Dijk K (2022) Human clinical isolates of pathogenic fungi are host to diverse mycoviruses. Microbiol Spectr 10:e0161022

    Article  PubMed  Google Scholar 

  84. Karnkowska A, Vacek V, Zubacova Z, Treitli SC, Petrzelkova R, Eme L, Novak L, Zarsky V, Barlow LD, Herman EK, Soukal P, Hroudova M, Dolezal P, Stairs CW, Roger AJ, Elias M, Dacks JB, Vlcek C, Hampl V (2016) A eukaryote without a mitochondrial organelle. Curr Biol 26:1274–1284

    Article  CAS  PubMed  Google Scholar 

  85. Varsani A, Opriessnig T, Celer V, Maggi F, Okamoto H, Blomstrom AL, Cadar D, Harrach B, Biagini P, Kraberger S (2021) Taxonomic update for mammalian anelloviruses (family Anelloviridae). Arch Virol 166:2943–2953

    Article  CAS  PubMed  Google Scholar 

  86. Biagini P (2009) Classification of TTV and related viruses (anelloviruses). Curr Top Microbiol Immunol 331:21–33

    CAS  PubMed  Google Scholar 

  87. Biagini P, Bendinelli M, Hino S, Kakkola L, Mankertz A, Niel C, Okamoto H, Raidal S, Teo CG, Todd D (2012) Family Anelloviridae. In: King AMQ, Adams EB, Carstens EB, E.J. L (eds) Virus taxonomy: ninth report of the International Committee on taxonomy of viruses. Academic press, London, pp 331–341

    Google Scholar 

  88. Butkovic A, Kraberger S, Smeele Z, Martin DP, Schmidlin K, Fontenele RS, Shero MR, Beltran RS, Kirkham AL, Aleamotu’a M, Burns JM, Koonin EV, Varsani A, Krupovic M (2023) Evolution of anelloviruses from a circovirus-like ancestor through gradual augmentation of the jelly-roll capsid protein. Virus Evol 9:vead035

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ng TF, Willner DL, Lim YW, Schmieder R, Chau B, Nilsson C, Anthony S, Ruan Y, Rohwer F, Breitbart M (2011) Broad surveys of DNA viral diversity obtained through viral metagenomics of mosquitoes. PLoS ONE 6:e20579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dennis TPW, de Souza WM, Marsile-Medun S, Singer JB, Wilson SJ, Gifford RJ (2019) The evolution, distribution and diversity of endogenous circoviral elements in vertebrate genomes. Virus Res 262:15–23

    Article  CAS  PubMed  Google Scholar 

  91. Liu H, Li P, Liu J (2011) Numerical investigation of underlying tunnel heave during a new tunnel construction. Tunn Undergr Space Technol 26:276–283

    Article  Google Scholar 

  92. Patterson QM, Kraberger S, Martin DP, Shero MR, Beltran RS, Kirkham AL, Aleamotu’a M, Ainley DG, Kim S, Burns JM, Varsani A (2021) Circoviruses and cycloviruses identified in Weddell seal fecal samples from McMurdo Sound, Antarctica. Infect Genet Evol 95:105070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dalton CS, van de Rakt K, Fahlman A, Ruckstuhl K, Neuhaus P, Popko R, Kutz S, van der Meer F (2017) Discovery of herpesviruses in Canadian wildlife. Arch Virol 162:449–456

    Article  CAS  PubMed  Google Scholar 

  94. Giacinti JA, Pearl DL, Ojkic D, Campbell GD, Jardine CM (2022) Genetic characterization of canine distemper virus from wild and domestic animal submissions to diagnostic facilities in Canada. Prev Vet Med 198:105535

    Article  PubMed  Google Scholar 

  95. Lopez-Perez AM, Moreno K, Chaves A, Ibarra-Cerdena CN, Rubio A, Foley J, List R, Suzan G, Sarmiento RE (2019) Carnivore protoparvovirus 1 at the wild-domestic carnivore interface in Northwestern Mexico. EcoHealth 16:502–511

    Article  PubMed  Google Scholar 

  96. Condori RE, Aragon A, Breckenridge M, Pesko K, Mower K, Ettestad P, Melman S, Velasco-Villa A, Orciari LA, Yager P, Streicker DG, Gigante CM, Morgan C, Wallace R, Li Y (2022) Divergent rabies virus variant of probable bat origin in 2 gray foxes, New Mexico, USA. Emerg Infect Dis 28:1137–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pepin KM, Davis AJ, Streicker DG, Fischer JW, VerCauteren KC, Gilbert AT (2017) Predicting spatial spread of rabies in skunk populations using surveillance data reported by the public. PLoS Negl Trop Dis 11:e0005822

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wadhwa A, Wilkins K, Gao J, Condori Condori RE, Gigante CM, Zhao H, Ma X, Ellison JA, Greenberg L, Velasco-Villa A, Orciari L, Li Y (2017) A pan-lyssavirus taqman real-time RT-PCR assay for the detection of highly variable rabies virus and other lyssaviruses. PLoS Negl Trop Dis 11:e0005258

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kuzmin IV, Shi M, Orciari LA, Yager PA, Velasco-Villa A, Kuzmina NA, Streicker DG, Bergman DL, Rupprecht CE (2012) Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001–2009. PLoS Pathog 8:e1002786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Velasco-Villa A, Reeder SA, Orciari LA, Yager PA, Franka R, Blanton JD, Zuckero L, Hunt P, Oertli EH, Robinson LE, Rupprecht CE (2008) Enzootic rabies elimination from dogs and reemergence in wild terrestrial carnivores, United States. Emerg Infect Dis 14:1849–1854

    Article  PubMed  PubMed Central  Google Scholar 

  101. Real LA, Henderson JC, Biek R, Snaman J, Jack TL, Childs JE, Stahl E, Waller L, Tinline R, Nadin-Davis S (2005) Unifying the spatial population dynamics and molecular evolution of epidemic rabies virus. Proc Natl Acad Sci USA 102:12107–12111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nadin-Davis SA, Abdel-Malik M, Armstrong J, Wandeler AI (2002) Lyssavirus P gene characterisation provides insights into the phylogeny of the genus and identifies structural similarities and diversity within the encoded phosphoprotein. Virology 298:286–305

    Article  CAS  PubMed  Google Scholar 

  103. Kuzmina NA, Kuzmin I, Ellison J, Rupprecht CE (2013) Conservation of binding epitopes for monoclonal antibodies on the rabies virus glycoprotein. J Antivir Antiretrovir 5:37–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Angela Oreshkova and Zach Ziebarth for their assistance in collecting the scat that was used in this research. We would like to also acknowledge the support provided by the Arizona State University Natural History Collection and the Central Arizona Phoenix Long Term Ecological Research Project (grant number DEB-1832016) through the equipment and space used to enable this research. Savage Cree Hess was supported by an Arizona State University Graduate Fellowship Grant. We thank Dakota M. Rowsey (Arizona State University, USA) for the constructive feedback on the manuscript and equipment provided to process the scat for dietary analysis. We acknowledge that this research has taken place on or near the ancestral lands of 22 tribes within Arizona, such as Akimel O’odham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Varsani.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Research involving human participants and/or animals

The research did not involve human participants or animals. This study is a non-invasive study sampling feces of coyotes.

Additional information

Handling Editor: Sheela Ramamoorthy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hess, S.C., Weiss, K.C.B., Custer, J.M. et al. Identification of small circular DNA viruses in coyote fecal samples from Arizona (USA). Arch Virol 169, 12 (2024). https://doi.org/10.1007/s00705-023-05937-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05937-w

Navigation