Skip to main content
Log in

Genetic insights into the microevolutionary dynamics and early introductions of human monkeypox virus in Mexico

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The recent global outbreak of mpox, caused by monkeypox virus (MPV) emerged in Europe in 2022 and rapidly spread to over 40 countries. The Americas are currently facing the highest impact, reporting over 50,000 cases by early 2023. In this study, we analyzed 880 MPV isolates worldwide to gain insights into the evolutionary patterns and initial introduction events of the virus in Mexico. We found that MPV entered Mexico on multiple occasions, from the United Kingdom, Portugal, and Canada, and subsequently spread locally in different regions of Mexico. Additionally, we show that MPV has an open pangenome, highlighting the role of gene turnover in shaping its genomic diversity, rather than single-nucleotide polymorphisms (SNPs), which do not contribute significantly to genome diversity. Although the genome contains multiple SNPs in coding regions, these remain under purifying selection, suggesting their evolutionary conservation. One notable exception is amino acid position 63 of the protein encoded by the Cop-A4L gene, which is intricately related to viral maturity, which we found to be under strong positive selection. Ancestral state reconstruction indicated that the ancestral state at position 63 corresponds to the amino acid valine, which is present only in isolates of clade I. However, the isolates from the current outbreak contained threonine at position 63. Our findings contribute new information about the evolution of monkeypox virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McCollum AM, Damon IK (2014) Human monkeypox. Clin Infect Dis 58:260–267

    Article  PubMed  Google Scholar 

  2. Fine PE, Jezek Z, Grab B, Dixon H (1988) The transmission potential of monkeypox virus in human populations. Int J Epidemiol 17:643–650

    Article  CAS  PubMed  Google Scholar 

  3. Ladnyj ID, Ziegler P, Kima E (1972) A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull World Health Organ 46:593–597

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Saravanan M, Belete MA, Madhavan Y (2022) Monkeypox virus outbreaks in the African continent: A new zoonotic alert—Correspondence. Int J Surg 108:106998

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen N, Li G, Liszewski MK, Atkinson JP, Jahrling PB, Feng Z, Schriewer J, Buck C, Wang C, Lefkowitz EJ, Esposito JJ, Harms T, Damon IK, Roper RL, Upton C, Buller RM (2005) Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology 340:46–63

    Article  CAS  PubMed  Google Scholar 

  6. Huhn GD, Bauer AM, Yorita K, Graham MB, Sejvar J, Likos A, Damon IK, Reynolds MG, Kuehnert MJ (2005) Clinical characteristics of human monkeypox, and risk factors for severe disease. Clin Infect Dis 41:1742–1751

    Article  PubMed  Google Scholar 

  7. Yinka-Ogunleye A, Aruna O, Dalhat M, Ogoina D, McCollum A, Disu Y, Mamadu I, Akinpelu A, Ahmad A, Burga J, Ndoreraho A, Nkunzimana E, Manneh L, Mohammed A, Adeoye O, Tom-Aba D, Silenou B, Ipadeola O, Saleh M, Adeyemo A, Nwadiutor I, Aworabhi N, Uke P, John D, Wakama P, Reynolds M, Mauldin MR, Doty J, Wilkins K, Musa J, Khalakdina A, Adedeji A, Mba N, Ojo O, Krause G, Ihekweazu C, CDCMO Team (2019) Outbreak of human monkeypox in Nigeria in 2017–18: a clinical and epidemiological report. Lancet Infect Dis 19:872–879

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang L, Shang J, Weng S, Aliyari SR, Ji C, Cheng G, Wu A (2023) Genomic annotation and molecular evolution of monkeypox virus outbreak in 2022. J Med Virol 95:e28036

    Article  CAS  PubMed  Google Scholar 

  9. WHO (2023) 2022–23 Mpox outbreak: global trends. World Health Organization, Geneva

    Google Scholar 

  10. Organization PAH (2023) Mpox cases—Region of the Americas

  11. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shean RC, Makhsous N, Stoddard GD, Lin MJ, Greninger AL (2019) VAPiD: a lightweight cross-platform viral annotation pipeline and identification tool to facilitate virus genome submissions to NCBI GenBank. BMC Bioinform 20:48

    Article  Google Scholar 

  13. Senkevich TG, Yutin N, Wolf YI, Koonin EV, Moss B (2021) Ancient gene capture and recent gene loss shape the evolution of orthopoxvirus-host interaction genes. MBio 12:e0149521

    Article  PubMed  Google Scholar 

  14. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko P, Bedford T, Neher RA (2018) Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34:4121–4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  16. Sagulenko P, Puller V, Neher RA (2018) TreeTime: maximum-likelihood phylodynamic analysis. Virus Evol 4:vex042

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ishikawa SA, Zhukova A, Iwasaki W, Gascuel O (2019) A fast likelihood method to reconstruct and visualize ancestral scenarios. Mol Biol Evol 36:2069–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113

    Article  Google Scholar 

  20. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  21. Kosakovsky Pond SL, Poon AFY, Velazquez R, Weaver S, Hepler NL, Murrell B, Shank SD, Magalis BR, Bouvier D, Nekrutenko A, Wisotsky S, Spielman SJ, Frost SDW, Muse SV (2020) HyPhy 2.5—a customizable platform for evolutionary hypothesis testing using phylogenies. Mol Biol Evol 37:295–299

    Article  PubMed  Google Scholar 

  22. Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL (2018) Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol 35:773–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salud Sd (2022) México confirma primer caso importado de viruela símica

  24. Wang L, Luo Y, Zhao Y, Gao GF, Bi Y, Qiu HJ (2020) Comparative genomic analysis reveals an “open” pan-genome of African swine fever virus. Transbound Emerg Dis 67:1553–1562

    Article  CAS  PubMed  Google Scholar 

  25. Dobrovolna M, Brazda V, Warner EF, Bidula S (2023) Inverted repeats in the monkeypox virus genome are hot spots for mutation. J Med Virol 95:e28322

    Article  CAS  PubMed  Google Scholar 

  26. Firth C, Kitchen A, Shapiro B, Suchard MA, Holmes EC, Rambaut A (2010) Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol Biol Evol 27:2038–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luna N, Ramirez AL, Munoz M, Ballesteros N, Patino LH, Castaneda SA, Bonilla-Aldana DK, Paniz-Mondolfi A, Ramirez JD (2022) Phylogenomic analysis of the monkeypox virus (MPXV) 2022 outbreak: emergence of a novel viral lineage? Travel Med Infect Dis 49:102402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Castelan-Sanchez HG, Delaye L, Inward RPD, Dellicour S, Gutierrez B, Martinez de la Vina N, Boukadida C, Pybus O, de Anda Jauregui G, Guzman P, Flores-Garrido M, Fontanelli O, Hernandez Rosales M, Meneses A, Olmedo-Alvarez G, Herrera-Estrella AH, Sanchez-Flores A, Munoz-Medina JE, Comas-Garcia A, Gomez-Gil B, Zarate S, Taboada B, Lopez S, Arias CF, Kraemer MUG, Lazcano A, Escalera Zamudio M (2023) Comparing the evolutionary dynamics of predominant SARS-CoV-2 virus lineages co-circulating in Mexico. Elife 12:e82069

    Article  PubMed  PubMed Central  Google Scholar 

  29. Castelan-Sanchez HG, Martinez-Castilla LP, Sganzerla-Martinez G, Torres-Flores J, Lopez-Leal G (2022) Genome evolution and early introductions of the SARS-CoV-2 omicron variant in Mexico. Virus Evol 8:veac109

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhan XY, Zha GF, He Y (2023) Evolutionary dissection of monkeypox virus: positive Darwinian selection drives the adaptation of virus-host interaction proteins. Front Cell Infect Microbiol 12:1083234

    Article  PubMed  PubMed Central  Google Scholar 

  31. Alkhalil A, Strand S, Mucker E, Huggins JW, Jahrling PB, Ibrahim SM (2009) Inhibition of monkeypox virus replication by RNA interference. Virol J 6:188

    Article  PubMed  PubMed Central  Google Scholar 

  32. Williams O, Wolffe EJ, Weisberg AS, Merchlinsky M (1999) Vaccinia virus WR gene A5L is required for morphogenesis of mature virions. J Virol 73:4590–4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Risco C, Rodriguez JR, Demkowicz W, Heljasvaara R, Carrascosa JL, Esteban M, Rodriguez D (1999) The vaccinia virus 39-kDa protein forms a stable complex with the p4a/4a major core protein early in morphogenesis. Virology 265:375–386

    Article  CAS  PubMed  Google Scholar 

  34. Demkowicz WE, Maa JS, Esteban M (1992) Identification and characterization of vaccinia virus genes encoding proteins that are highly antigenic in animals and are immunodominant in vaccinated humans. J Virol 66:386–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Gamaliel López-Leal thanks Paola Rojas-Estévez for her useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hugo G. Castelán-Sánchez or Gamaliel López-Leal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Data availability

The original contributions presented in the study are included in the article or Supporting Information; further inquiries can be directed to the corresponding authors.

Additional information

Handling Editor: William G. Dundon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supporting information 1 Genome sequences used (XLSX 37 KB)

705_2023_5936_MOESM2_ESM.pdf

Supporting information 2 Maximum-likelihood phylogenetic tree based on 880 MPV genome sequences. Clade I, clade IIa, and clade IIb are indicated by yellow, green, and blue branches, respectively. The lineage of each isolate is highlighted in different colors (ribbon color). Mexican isolates are indicated by red stars. The tree scale is based on the number of substitutions per site, and SH-aLRT support values ≥ 95 are depicted by strong red circles at the internal nodes of the phylogeny. (PDF 139 KB)

Supporting information 3 Root-to-tip regression analysis based on the ML trees obtained for MPV (PDF 121 KB)

705_2023_5936_MOESM4_ESM.pdf

Supporting information 4 Reconstruction of the ancestry of MPV. This figure shows a compressed visualization produced by PastML using a marginal posterior probability approximation (MPPA) with a model similar to F81. Different colors correspond to different geographic regions, namely, the ancestral node in red (United Kingdom) and the Mexican node in green. The numbers inside or next to the circles indicate the number of branches associated with specific nodes. The number of times that a branch appears in the same place indicates the number of times a particular substructure of the tree was found in the original phylogenetic tree. This indicates the number of independent introductions for that country, and dark gray indicates more than one branch at that position. This compression includes vertical and horizontal merging with optional relaxed merging and pruning to simplify complex tree representations, helping to highlight essential evolutionary patterns and reduce complexity. (PDF 31 KB)

705_2023_5936_MOESM5_ESM.docx

Supporting information 5 Table showing the number of shared genes (core genome) and total genes (pangenome) (DOCX 47 KB)

Supporting information 6 Pangenome plot of the global gene repertoire of the mpox virus genome (PDF 16 KB)

705_2023_5936_MOESM7_ESM.xlsx

Supporting information 7 Total number of sites under natural selection. The table shows the number of sites potentially under negative and positive selection in the MPV genome according to inference by the FEL method (see Materials and methods) (XLSX 37 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Sánchez, I., Castelán-Sánchez, H.G., Martínez-Castilla, L.P. et al. Genetic insights into the microevolutionary dynamics and early introductions of human monkeypox virus in Mexico. Arch Virol 169, 2 (2024). https://doi.org/10.1007/s00705-023-05936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05936-x

Navigation