Skip to main content
Log in

Characterization of a novel endornavirus isolated from the phytopathogenic fungus Rhizoctonia solani

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Rhizoctonia solani endornavirus 8 (RsEV8) was isolated from strain XY175 of Rhizoctonia solani AG-1 IA. The full-length genome of RsEV8 is 16,147 nucleotides (nt) in length and contains a single open reading frame that encodes a large polyprotein of 5227 amino acids. The polyprotein contains four conserved domains: viral methyltransferase, putative DEAH box helicase, viral helicase, and RNA-dependent RNA polymerase (RdRp). RsEV8 has a shorter 3'-UTR (58 nt) and a longer 5'-UTR (404 nt). A multiple sequence alignment indicated that the RdRp of RsEV8 possesses eight typical RdRp motifs. According to a BLASTp analysis, RsEV8 shares 39.31% sequence identity with Rhizoctonia cerealis endornavirus-1084-7. Phylogenetic analysis demonstrated that RsEV8 clusters with members of the genus Betaendornavirus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All relevant data are within the paper.

References

  1. Lefebvre A, Scalla R, Pfeiffer P (1990) The double-stranded RNA associated with the “447” cytoplasmic male sterility in Vicia faba is packaged together with its replicase in cytoplasmic membranous vesicles. Plant Mol Biol 14:477–490

    Article  CAS  PubMed  Google Scholar 

  2. Valverde RA, Khalifa ME, Okada R, Fukuhara T, Sabanadzovic S, Ictv Report C (2019) ICTV virus taxonomy profile: Endornaviridae. J Gen Virol 100:1204–1205

    Article  CAS  PubMed  Google Scholar 

  3. Fukuhara T (2019) Endornaviruses: persistent dsRNA viruses with symbiotic properties in diverse eukaryotes. Virus Genes 55:165–173

    Article  CAS  PubMed  Google Scholar 

  4. Roossinck MJ, Sabanadzovic S, Okada R, Valverde RA (2011) The remarkable evolutionary history of endornaviruses. J Gen Virol 92:2674–2678

    Article  CAS  PubMed  Google Scholar 

  5. Li W, Zhang H, Shu Y, Cao S, Sun H, Zhang A, Chen H (2021) Genome structure and diversity of novel endornaviruses from wheat sharp eyespot pathogen Rhizoctonia cerealis. Virus Res 297:198368

    Article  CAS  PubMed  Google Scholar 

  6. Okada R, Yong CK, Valverde RA, Sabanadzovic S, Aoki N, Hotate S, Kiyota E, Moriyama H, Fukuhara T (2013) Molecular characterization of two evolutionarily distinct endornaviruses co-infecting common bean (Phaseolus vulgaris). J Gen Virol 94:220–229

    Article  CAS  PubMed  Google Scholar 

  7. Ong JWL, Li H, Sivasithamparam K, Dixon KW, Jones MGK, Wylie SJ (2016) Novel Endorna-like viruses, including three with two open reading frames, challenge the membership criteria and taxonomy of the Endornaviridae. Virology 499:203–211

    Article  CAS  PubMed  Google Scholar 

  8. Osaki H, Nakamura H, Sasaki A, Matsumoto N, Yoshida K (2006) An endornavirus from a hypovirulent strain of the violet root rot fungus, Helicobasidium mompa. Virus Res 118:143–149

    Article  CAS  PubMed  Google Scholar 

  9. Tuomivirta TT, Kaitera J, Hantula J (2009) A novel putative virus of Gremmeniella abietina type B (Ascomycota: Helotiaceae) has a composite genome with endornavirus affinities. J Gen Virol 90:2299–2305

    Article  CAS  PubMed  Google Scholar 

  10. Khankhum S, Valverde RA (2018) Physiological traits of endornavirus-infected and endornavirus-free common bean (Phaseolus vulgaris) cv Black Turtle Soup. Arch Virol 163:1051–1056

    Article  CAS  PubMed  Google Scholar 

  11. Otulak-Kozieł K, Kozieł E, Escalante C, Valverde RA (2020) Ultrastructural analysis of cells from bell pepper (Capsicum annuum) infected with bell pepper endornavirus. Front Plant Sci 11:491

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang D, Wu M, Zhang J, Chen W, Li G, Yang L (2018) Sclerotinia minor endornavirus 1, a novel pathogenicity debilitation-associated mycovirus with a wide spectrum of horizontal transmissibility. Viruses 10:589

    Article  PubMed  PubMed Central  Google Scholar 

  13. Luo X, Jiang D, Xie J, Jia J, Duan J, Cheng J, Fu Y, Chen T, Yu X, Li B, Lin Y (2022) Genome characterization and phylogenetic analysis of a novel endornavirus that infects fungal pathogen Sclerotinia sclerotiorum. Viruses 14:456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bernardes-de-Assis J, Storari M, Zala M, Wang W, Jiang D, Shidong L, Jin M, McDonald BA, Ceresini PC (2009) Genetic structure of populations of the rice-infecting pathogen Rhizoctonia solani AG-1 IA from China. Phytopathology 99:1090–1099

    Article  PubMed  Google Scholar 

  15. Bhaskar Rao T, Chopperla R, Prathi NB, Balakrishnan M, Prakasam V, Laha GS, Balachandran SM, Mangrauthia SK (2020) A comprehensive gene expression profile of pectin degradation enzymes reveals the molecular events during cell wall degradation and pathogenesis of rice sheath blight pathogen Rhizoctonia solani AG1-IA. J Fungi 6:71

    Article  Google Scholar 

  16. González-Vera AD, Bernardes-de-Assis J, Zala M, McDonald BA, Correa-Victoria F, Graterol-Matute EJ, Ceresini PC (2010) Divergence between sympatric rice- and maize-infecting populations of Rhizoctonia solani AG-1 IA from Latin America. Phytopathology 100:172–182

    Article  PubMed  Google Scholar 

  17. Gónzalez D, Rodriguez-Carres M, Boekhout T, Stalpers J, Kuramae EE, Nakatani AK, Vilgalys R, Cubeta MA (2016) Phylogenetic relationships of Rhizoctonia fungi within the Cantharellales. Fungal Biol 120:603–619

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jia Y (2010) Cytological and molecular characterization of rice sheath blight pathogen Rhizoctonia Solani. Eur J Plant Pathol 129:511–528

    Google Scholar 

  19. Singh P, Mazumdar P, Harikrishna JA, Babu S (2019) Sheath blight of rice: a review and identification of priorities for future research. Planta 250:1387–1407

    Article  CAS  PubMed  Google Scholar 

  20. Abdoulaye AH, Foda MF, Kotta-Loizou I (2019) Viruses infecting the plant pathogenic fungus Rhizoctonia solani. Viruses 11:1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Picarelli MASC, Forgia M, Rivas EB, Nerva L, Chiapello M, Turina M, Colariccio A (2019) Extreme diversity of mycoviruses present in isolates of Rhizoctonia solani AG2-2 LP from Zoysia japonica from Brazil. Front Cell Infect Microbiol 9:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Y, Chen W, Niu Y, Xu P, Zhang L, Yu S, Yang G, Mo X (2022) Complete nucleotide sequence of a novel alphapartitivirus from Rhizoctonia solani AG-4 HG III isolate SM03. Arch Virol 167:953–957

    Article  CAS  PubMed  Google Scholar 

  23. Abdoulaye AH, Hai D, Tang Q, Jiang D, Fu Y, Cheng J, Lin Y, Li B, Kotta-Loizou I, Xie J (2021) Two distant helicases in one mycovirus: evidence of horizontal gene transfer between mycoviruses, coronaviruses and other nidoviruses. Virus Evol 7:043

    Article  Google Scholar 

  24. Das S, Falloon RE, Stewart A, Pitman AR (2014) Molecular characterisation of an endornavirus from Rhizoctonia solani AG-3PT infecting potato. Fungal Biol 118:924–934

    Article  CAS  PubMed  Google Scholar 

  25. Zheng L, Shu CW, Zhang ML, Yang M, Zhou EX (2019) Molecular characterization of a novel endornavirus conferring hypovirulence in rice sheath blight fungus Rhizoctonia solani AG-1 IA Strain GD-2. Viruses-Basel 11:178

    Article  CAS  Google Scholar 

  26. Das S, Falloon RE, Stewart A, Pitman AR (2016) Novel mitoviruses in Rhizoctonia solani AG-3PT infecting potato. Fungal Biol 120:338–350

    Article  CAS  PubMed  Google Scholar 

  27. Bartholomäus A, Wibberg D, Winkler A, Pühler A, Schlüter A, Varrelmann M (2016) Deep sequencing analysis reveals the mycoviral diversity of the virome of an avirulent isolate of Rhizoctonia solani AG-2-2 IV. PLoS One 11:e0165965

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li Y, Lyu R, Hai D, Jia J, Jiang D, Fu Y, Cheng J, Lin Y, Xie J (2022) Two novel rhabdoviruses related to hypervirulence in a phytopathogenic fungus. J Virol 96:e0001222

    Article  PubMed  Google Scholar 

  29. Potgieter AC, Page NA, Liebenberg J, Wright IM, Landt O, van Dijk AA (2009) Improved strategies for sequence-independent amplification and sequencing of viral double-stranded RNA genomes. J Gen Virol 90:1423–1432

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (grant 2021ZKPY005), the National Key Research and Development Program of China (grant 2017YFD0201100), and the Natural Science Foundation of China (grant 31772111).

Funding

This work was supported by Natural Science Foundation of China with grant 31772111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runhua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This research did not use human participants or other animals.

Additional information

Handling Editor: Nobuhiro Suzuki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huang, X., Zhou, G. et al. Characterization of a novel endornavirus isolated from the phytopathogenic fungus Rhizoctonia solani. Arch Virol 169, 15 (2024). https://doi.org/10.1007/s00705-023-05915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05915-2

Navigation