Skip to main content

Advertisement

Log in

Genome characterization of the novel lytic phage vB_AbaAut_ChT04 and the antimicrobial activity of its lysin peptide against Acinetobacter baumannii isolates from different time periods

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Acinetobacter baumannii is an important opportunistic pathogen, usually associated with immunocompromised individuals with a prolonged period of stay in a hospital. Currently, the incidence of multi-drug resistant A. baumannii (MDR-AB) and extensively drug-resistant A. baumannii (XDR-AB) is increasing rapidly in Thailand, mirroring the trend worldwide. Novel therapeutic approaches for the treatment of A. baumannii infection using bacteriophages are being evaluated, and the use of phage-derived peptides is being tested as alternative approach to fighting infection. In this study, we isolated and determined the biological features of a lytic A. baumannii phage called vB_AbaAut_ChT04 (vChT04). The vChT04 phage was classified as a member of the family Autographiviridae of the class Caudoviricetes. It showed a short latent period (10 min) and a large burst size (280 PFU cell−1), and it was able to infect 52 out of 150 clinical MDR-AB strains tested (34.67%). Most of the phage-sensitive strains were A. baumannii strains that had been isolated during the same year that the phage was isolated. The phage showed activity across a broad pH (pH 5.0–8.0) and temperature (4–37°C) range. Whole-genome analysis revealed that the vChT04 genome comprises 41,158 bp with a 39.3% GC content and contains 48 open reading frames (ORFs), 28 of which were assigned putative functions based on homology to previously identified phage genes. Comparative genomic analysis demonstrated that vChT04 had the highest similarity to phage vB_AbaP_WU2001, which was isolated in the southern part of Thailand. An endolysin gene found in the vChT04 genome was used to synthesize an antimicrobial peptide (designated as PLysChT04) and its antimicrobial activity was evaluated using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. The MIC and MBC values of peptide PLysChT04 against MDR-AB and XDR-AB were 312.5–625 µg/mL, and it was able to inhibit both phage-susceptible and phage-resistant isolates collected over different time periods. PLysChT04 showed good efficacy in killing drug-resistant A. baumannii and other bacterial strains, and it is a promising candidate for development as an alternative therapeutic agent targeting A. baumannii infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ibrahim S, Al-Saryi N, Al-Kadmy I, Aziz SN (2021) Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol Biol Rep 48:6987–6998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang PY, Shie SS, Ye J Jr, Lin SP, Liu TP, Wu TS, Wu TL, Chuang SS, Cheng MH, Hsieh YC, Huang CT (2017) Acquisition and clearance of multidrug resistant Acinetobacter baumannii on healthy young adults concurrently burned in a dust explosion in Taiwan: the implication for antimicrobial stewardship. BMC Infect Dis 17:1–9

    Article  Google Scholar 

  3. Kitti T, Manrueang S, Leungtongkam U, Khongfak S, Thummeepak R, Wannalerdsakun S, Jindayok T, Sitthisak S (2023) Genomic relatedness and dissemination of blaNDM–5 among Acinetobacter baumannii isolated from hospital environments and clinical specimens in Thailand. PeerJ 11:e14831

    Article  PubMed  PubMed Central  Google Scholar 

  4. Leungtongkam U, Thummeepak R, Wongprachan S, Thongsuk P, Kitti T, Ketwong K, Runcharoen C, Chantratita N, Sitthisak S (2018) Dissemination of blaOXA–23, blaOXA–24, blaOXA–58, and blaNDM–1 Genes of Acinetobacter baumannii Isolates from Four Tertiary Hospitals in Thailand. Microb Drug Resist 24:55–62

    Article  CAS  PubMed  Google Scholar 

  5. WHO, WHO Publishes List of Bacteria for which New Antibiotics Are Urgently Needed (2017). World Health Organization. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed 19 July 2022

  6. Schmelcher M, Donovan DM, Loessner MJ (2012) Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:1147–1171

    Article  CAS  PubMed  Google Scholar 

  7. Hatfull GF, Hendrix RW (2011) Bacteriophages and their genomes. Curr Opin Virol 1:298–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kitti T, Thummeepak R, Leungtongkam U, Kunthalert D, Sitthisak S (2015) Efficacy of Acinetobacter baumannii bacteriophage cocktail on Acinetobacter baumannii growth. Afr J Microbiol Res 9:2159–2165

    Google Scholar 

  9. Hua Y, Luo T, Yang Y, Dong D, Wang R, Wang Y, Xu M, Guo X, Hu F, He P (2018) Phage therapy as a promising new treatment for lung infection caused by carbapenem-resistant Acinetobacter baumannii in mice. Front Microbiol 8:2659

  10. Schooley RT, Biswas B, Gill JJ et al (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61:e00954–e00917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. LaVergne S, Hamilton T, Biswas B, Kumaraswamy M, Schooley RT, Wooten D (2018) Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. Open forum infectious diseases 5:ofy064

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thummeepak R, Kitti T, Kunthalert D, Sitthisak S (2016) Enhanced antibacterial activity of Acinetobacter baumannii bacteriophage ØABP-01 endolysin (LysABP-01) in combination with colistin. Front Microbiol 7:1402

    Article  PubMed  PubMed Central  Google Scholar 

  13. Khan FM, Gondil VS, Li C, Jiang M, Li J, Yu J, Wei H, Yang H (2021) A novel Acinetobacter baumannii bacteriophage endolysin LysAB54 with high antibacterial activity against multiple Gram-negative microbes. Front Cell Infect Microbiol 11:637313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peng SY, You RI, Lai MJ, Lin NT, Chen LK, Chang KC (2017) Highly potent antimicrobial modified peptides derived from the Acinetobacter baumannii phage endolysin LysAB2. Sci Rep 7:1–12

    Article  Google Scholar 

  15. CLSI (2022) CLSI. Performance standards for antimicrobial susceptibility testing. 32nd ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; Wayne, PA: 2022

  16. Kitti T, Thummeepak R, Thanwisai A, Boonyodying K, Kunthalert D, Ritvirool P, Sitthisak S (2014) Characterization and detection of endolysin gene from three Acinetobacter baumannii bacteriophages isolated from sewage water. Indian J Microbiol 54:383–388

    Article  PubMed  PubMed Central  Google Scholar 

  17. Leungtongkam U, Thummeepak R, Kitti T, Tasanapak K, Wongwigkarn J, Styles KM, Wellington EMH, Millard A, Sagona AP, Sitthisak S (2020) Genomic analysis reveals high virulence and antibiotic resistance amongst phage susceptible Acinetobacter baumannii. Sci Rep 10:1–11

    Article  Google Scholar 

  18. Wang C, Li P, Zhu Y, Huang Y, Gao M, Yuan X, Niu W, Liu H, Fan H, Qin T, Tong Y, Mi Z, Bai C (2020) Identification of a novel Acinetobacter baumannii phage-derived depolymerase and its therapeutic application in mice. Front Microbiol 11:1407

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jeon J, D'Souza R, Pinto N, Ryu CM, Park J, Yong D, Lee K (2016) Characterization and complete genome sequence analysis of two Myoviral bacteriophages infecting clinical carbapenem-resistant Acinetobacter baumannii isolates. J Appl Microbiol 121:68–77

    Article  CAS  PubMed  Google Scholar 

  20. Joshi NA, Fass J (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]

  21. Andrews S (2010) FastQC a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 25 Feb 2022

  22. Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    Article  CAS  PubMed  Google Scholar 

  24. Liu B, Pop M (2009) ARDB—antibiotic resistance genes database. Nucleic Acids Res 37:D443–D447

    Article  CAS  PubMed  Google Scholar 

  25. Liu B, Zheng D, Zhou S, Chen L, Yang J (2022) VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res 50:D912–D917

    Article  CAS  PubMed  Google Scholar 

  26. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931

    Article  CAS  PubMed  Google Scholar 

  28. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meier-Kolthoff JP, Göker M (2017) VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 33:3396–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moraru C, Varsani A, Kropinski AM (2020) VIRIDIC—a novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 12:1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paysan-Lafosse T, Blum M, Chuguransk S et al (2023) InterPro in 2022. Nucleic Acids Res 51:D418–D427

    Article  CAS  PubMed  Google Scholar 

  33. Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43(W1):W174–W181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Khongfak S, Thummeepak R, Leungtongkam U, Tasanapak K, Thanwisai A, Sitthisak S (2022) Insights into mobile genetic elements and the role of conjugative plasmid in transferring aminoglycoside resistance in extensively drug-resistant Acinetobacter baumannii AB329. PeerJ 10:e13718

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pillai SK, Moellering RC, Eliopoulos GM (2005) Antimicrobial combinations. In: Lorian V (ed) Antibiotics in Laboratory Medicine (Philadelphia, PA: Lippincott, Williams and Wilkins), p 365–440

  36. Nocera FP, Attili AR, De Martino L (2021) Acinetobacter baumannii: its clinical significance in human and veterinary medicine. Pathogens 10:127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pires DP, Costa AR, Pinto G, Meneses L, Azeredo J (2020) Current challenges and future opportunities of phage therapy. FEMS Microbiol Rev 44:684–700

    Article  CAS  PubMed  Google Scholar 

  38. Styles KM, Thummeepak R, Leungtongkam U, Smith SE, Christie GS, Millard A, Moat J, Dowson CG, Wellington EMH, Sitthisak S, Sagona AP (2020) Investigating bacteriophages targeting the opportunistic pathogen Acinetobacter baumannii. Antibiotics 9:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koskella B, Brockhurst MA (2014) Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 38:916–931

    Article  CAS  PubMed  Google Scholar 

  40. Bull JJ, Gill JJ (2014) The habits of highly effective phages: population dynamics as a framework for identifying therapeutic phages. Front Microbiol 5:618

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wintachai P, Phaonakrop N, Roytrakul S, Naknaen A, Pomwised R, Voravuthikunchai SP, Surachat K, Smith DR (2022) Enhanced antibacterial effect of a novel Friunavirus phage vWU2001 in combination with colistin against carbapenem-resistant Acinetobacter baumannii. Sci Rep 12:1–19

    Article  Google Scholar 

  42. Wu M, Hu K, Xie Y, Liu Y, Mu D, Guo H, Zhang Z, Zhang Y, Chang D, Shi Y (2019) A novel phage PD-6A3, and its endolysin Ply6A3, with extended lytic activity against Acinetobacter baumannii. Front Microbiol 9:3302

    Article  PubMed  PubMed Central  Google Scholar 

  43. Turner D, Shkoporov AN, Lood C et al (2023) Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch Virol 168:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Turner D, Kropinski AM, Adriaenssens EM (2021) A roadmap for genome-based phage taxonomy. Viruses 13:506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Egido JE, Costa AR, Aparicio-Maldonado C, Haas PJ, Brouns SJ (2022) Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev 46:fuab048

    Article  CAS  PubMed  Google Scholar 

  46. Thandar M, Lood R, Winer BY, Deutsch DR, Euler CW, Fischetti VA (2016) Novel engineered peptides of a phage lysin as effective antimicrobials against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 60:2671–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114

    Article  PubMed  PubMed Central  Google Scholar 

  48. Maciejewska B, Olszak T, Drulis-Kawa Z (2018) Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol 102:2563–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. El-Shibiny A, El-Sahhar S (2017) Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria. Can J Microbiol 63:865–879

    Article  CAS  PubMed  Google Scholar 

  50. Domingo-Calap P, Delgado-Martínez J (2018) Bacteriophages: protagonists of a post-antibiotic era. Antibiotics 7:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank and acknowledge the staff who collected the clinical specimens used in this study. We also thank Dr. Zhaoxia Zhou at the Loughborough Materials Characterisation Centre (LMCC) for helping and providing technical assistance with TEM.

Funding

This project was financially supported by Thailand Research Fund and Naresuan University under the Mid-Career Researcher Grant (RSA6180042). UL was supported by the Royal Golden Jubilee Ph.D. Program (PHD/0227/2560).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SS, KT, JW, DJM, and SK. Investigation: UL, TK, SK, and RT. Methodology: SS, UL, TK, and RT. TEM material preparation and investigation: DJM, UL, AB, HGR, JST. Formal analysis: UL. Resources: UL. Data curation: UL and SS. Project administration: SS. Supervision: SS. Funding acquisition: SS. Writing—original draft: UL and SS. Writing—review and editing: SS and DJM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sutthirat Sitthisak.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: T. K. Frey.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Supplementary Material 1 (FNA 42 KB)

Supplementary Material 2 (XLSX 1572 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leungtongkam, U., Kitti, T., Khongfak, S. et al. Genome characterization of the novel lytic phage vB_AbaAut_ChT04 and the antimicrobial activity of its lysin peptide against Acinetobacter baumannii isolates from different time periods. Arch Virol 168, 238 (2023). https://doi.org/10.1007/s00705-023-05862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05862-y

Navigation