Skip to main content
Log in

Genomic analysis and characterization of bacteriophage vB_SpuS_NX263 infecting Salmonella enterica subsp. enterica serovar Pullorum

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In this study, a new Salmonella phage, NX263, was isolated from sewage. This phage could lyse 90.57% (48/53) of the bacterial strains tested and showed good activity over a wide range of temperature (up to 60°C) and pH (5–10). Phylogenetic analysis showed that it should be classified as a member of the genus Skatevirus. The genome of phage NX263 is 46,574 bp in length with a GC content of 45.52%. It contains 89 open reading frames and two tRNA genes. No lysogeny, drug resistance, or virulence-associated genes were identified in the genome sequence, suggesting that this phage could potentially be used to treat Salmonella Pullorum infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Calenge F et al (2010) Genetic control of resistance to salmonellosis and to Salmonella carrier-state in fowl: a review. Genet Sel Evol 42:11

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barrow PA et al (2012) The long view: Salmonella - the last forty years. Avian Pathol 41(5):413–420

    Article  CAS  PubMed  Google Scholar 

  3. Barrow PA, Freitas OC, Neto (2011) Pullorum disease and fowl typhoid–new thoughts on old diseases: a review. Avian Pathol 40(1):1–13

    Article  CAS  PubMed  Google Scholar 

  4. Ferri M et al (2017) Antimicrobial resistance: A global emerging threat to public health systems. Crit Rev Food Sci Nutr 57(13):2857–2876

    Article  CAS  PubMed  Google Scholar 

  5. Reardon S (2014) Antibiotic resistance sweeping developing world. Nature 509(7499):141–142

    Article  CAS  PubMed  Google Scholar 

  6. Hede K (2014) Antibiotic resistance: An infectious arms race. Nature 509(7498):S2–3

    Article  PubMed  Google Scholar 

  7. Hendrix RW et al (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci U S A 96(5):2192–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hambly E, Suttle CA (2005) The viriosphere, diversity, and genetic exchange within phage communities. Curr Opin Microbiol 8(4):444–450

    Article  CAS  PubMed  Google Scholar 

  9. Chanishvili N (2012) Phage therapy–history from Twort and d’Herelle through Soviet experience to current approaches. Adv Virus Res 83:3–40

    Article  CAS  PubMed  Google Scholar 

  10. Hong SS et al (2013) Therapeutic effects of bacteriophages against Salmonella gallinarum infection in chickens. J Microbiol Biotechnol 23(10):1478–1483

    Article  CAS  PubMed  Google Scholar 

  11. Lim TH et al (2012) Use of bacteriophage for biological control of Salmonella Enteritidis infection in chicken. Res Vet Sci 93(3):1173–1178

    Article  PubMed  Google Scholar 

  12. Henriques A, Sereno R, Almeida A (2013) Reducing Salmonella horizontal transmission during egg incubation by phage therapy. Foodborne Pathog Dis 10(8):718–722

    Article  PubMed  Google Scholar 

  13. Adams MH (1959) Bacteriophages. New York,: Interscience Publishers. 592 p

  14. Kropinski AM, Prangishvili D, Lavigne R (2009) Position paper: the creation of a rational scheme for the nomenclature of viruses of Bacteria and Archaea. Environ Microbiol 11(11):2775–2777

    Article  PubMed  Google Scholar 

  15. Hooton SP, Atterbury RJ, Connerton IF (2011) Application of a bacteriophage cocktail to reduce Salmonella Typhimurium U288 contamination on pig skin. Int J Food Microbiol 151(2):157–163

    Article  PubMed  Google Scholar 

  16. Bao H, Zhang H, Wang R (2011) Isolation and characterization of bacteriophages of Salmonella enterica serovar Pullorum. Poult Sci 90(10):2370–2377

    Article  CAS  PubMed  Google Scholar 

  17. Green MR, Sambrook J, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  18. Aziz RK et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang DB et al (2015) Characterization and Genome Sequencing of a Novel Bacteriophage PH101 Infecting Pseudoalteromonas marina BH101 from the Yellow Sea of China. Curr Microbiol 71(5):594–600

    Article  CAS  PubMed  Google Scholar 

  20. Carver T et al (2009) DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25(1):119–120

    Article  CAS  PubMed  Google Scholar 

  21. Tie K et al (2018) Isolation and identification of Salmonella pullorum bacteriophage YSP2 and its use as a therapy for chicken diarrhea. Virus Genes 54(3):446–456

    Article  CAS  PubMed  Google Scholar 

  22. Guilliam TA et al (2015) Primase-polymerases are a functionally diverse superfamily of replication and repair enzymes. Nucleic Acids Res 43(14):6651–6664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yasui R et al (2017) Characterization of an anti-varicella-zoster virus compound that targets the portal protein encoded by ORF54. Microbiol Immunol 61(9):398–402

    Article  CAS  PubMed  Google Scholar 

  24. Kutter EM et al (2011) Characterization of a ViI-like phage specific to Escherichia coli O157:H7. Virol J 8:430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cumby N et al (2015) The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Mol Microbiol 96(3):437–447

    Article  CAS  PubMed  Google Scholar 

  26. Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol 300(6):357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujisawa H, Morita M (1997) Phage DNA packaging. Genes Cells 2(9):537–545

    Article  CAS  PubMed  Google Scholar 

  28. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  30. Walker PJ et al (2021) Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch Virol 166(9):2633–2648

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Professor Tong Yigang and Mr. Li Jing of Beijing Advanced Innovation Centre for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, for their help in sequence splicing.

This work were funded by the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (No. 2019BT02N054)  and Yunfu Science and Technology Plan Project (No. S2021020101).

Author information

Authors and Affiliations

Authors

Contributions

Binghu Fang and Jianping Qin conceived and designed the experiments and critically evaluated the manuscript. Chunyang Zhu was responsible for data collation and analysis, extraction of DNA, and analysis of DNA biological information and completed this manuscript. Yigang Tong and Jing Li contributed to assembly of phage DNA sequences. Zhanxin Wang and Liu Yang isolated all of the strains involved in this study. Liu Yang and Fenhua Jin isolated and identified the phage and conducted the biological characterization experiments. Binghu Fang approved the version to be published and agrees to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding authors

Correspondence to Jianping Qin or Binghu Fang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Johannes Wittmann.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Li, J., Liu, Y. et al. Genomic analysis and characterization of bacteriophage vB_SpuS_NX263 infecting Salmonella enterica subsp. enterica serovar Pullorum. Arch Virol 168, 216 (2023). https://doi.org/10.1007/s00705-023-05841-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05841-3

Navigation