Skip to main content
Log in

Phylogenotyping of infectious bursal disease virus in Vietnam according to the newly unified genotypic classification scheme

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Since 1987, infectious bursal disease virus (IBDV) has circulated and evolved in Vietnam, but little is known about the genotypes present. IBDV samples were collected in 1987, 2001-2006, 2008, 2011, 2015-2019, and 2021 in 18 provinces. We conducted phylogenotyping analysis based on an alignment of 143 VP2-HVR (hypervariable region) sequences from 64 Vietnamese isolates (26 previous and 38 additional sequences and two vaccines, and alignment of 82 VP1 B-marker sequences, including one vaccine and four Vietnamese field strains. The analysis identified three A-genotypes, A1, A3, and A7, and two B-genotypes, B1 and B3, among the Vietnamese IBDV isolates. The lowest average evolutionary distance (8.6%) was seen between the A1 and A3 genotypes, and the highest (21.7%) was between A5 and A7, while there was a distance of 14% between B1 and B3 and 17% between B3 and B2. Unique signature residues were observed for genotypes A2, A3, A5, A6, and A8, which could be used for genotypic discrimination. A timeline statistical summary revealed that the A3-genotype predominated (79.8% presence) in Vietnam from 1987 to 2021 and that it remained the dominant IBDV genotype over the last five years (2016–2021). The current study contributes to a better understanding of the circulating genotypes and evolution of IBDV in Vietnam and worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Genomic and sequence data presented in this paper are publicly available via GenBank and provided in supplemental files.

References

  1. Cosgrove AS (1962) An apparently new disease of chickens—avian nephrosis. Avian Dis 6(3):385–389. https://www.jstor.org/stable/1587909

  2. Lukert PD, Saif YM (2003) Infectious bursal disease. In: Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE (eds) Diseases of poultry, 11th edn. Iowa State Press, Ames, pp 161–179

    Google Scholar 

  3. Zhang W, Wang X, Gao Y, Qi X (2022) The over-40-years-epidemic of infectious bursal disease virus in China. Viruses 14(10):2253. https://doi.org/10.3390/v14102253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pikuła A, Śmietanka K, Perez LJ (2020) Emergence and expansion of novel pathogenic reassortant strains of infectious bursal disease virus causing acute outbreaks of the disease in Europe. Transbound Emerg Dis 67:1739–1174. https://doi.org/10.1111/tbed.13510

    Article  CAS  PubMed  Google Scholar 

  5. Luque D, Saugar I, Rejas MT, Carrascosa JL, Rodríguez JF, Castón JR (2009) Infectious Bursal disease virus: ribonucleoprotein complexes of a double-stranded RNA virus. J Mol Biol 386(3):891–901. https://doi.org/10.1016/j.jmb.2008.11.029

    Article  CAS  PubMed  Google Scholar 

  6. Ye C, Wang Y, Zhang E, Han X, Yu Z, Liu H (2018) VP1 and VP3 are required and sufficient for translation initiation of uncapped infectious bursal disease virus genomic double-stranded RNA. J Virol 92(2):e0134517. https://doi.org/10.1128/JVI.01345-17

    Article  Google Scholar 

  7. Qin Y, Zheng SJ (2017) Infectious bursal disease virus-host interactions: multifunctional viral proteins that perform multiple and differing jobs. Int J Mol Sci 18(1):161. https://doi.org/10.3390/ijms18010161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van den Berg TP, Morales D, Eterradossi N, Rivallan G, Toquin D, Raue R, Zierenberg K, Zhang MF, Zhu YP, Wang CQ, Zheng HJ, Wang X, Chen GC, Lim BL, Müller H (2004) Assessment of genetic antigenic and pathotypic criteria for the characterization of IBDV strains. Avian Pathol 1:470–476. https://doi.org/10.1080/03079450400003650

    Article  CAS  Google Scholar 

  9. Le Nouën C, Toquin D, Müller H, Raue R, Kean KM, Langlois P, Cherbonnel M, Eterradossi N (2012) Different domains of the RNA polymerase of infectious bursal disease virus contribute to virulence. PLoS ONE 7:e28064. https://doi.org/10.1371/journal.pone.0028064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Escaffre O, Le Nouën C, Amelot M, Ambroggio X, Ogden KM, Guionie O, Toquin D, Müller H, Islam MR, Eterradossi N (2013) Both genome segments contribute to the pathogenicity of very virulent infectious bursal disease virus. J Virol 87(5):2767–2780. https://doi.org/10.1128/JVI.02360-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jackwood DJ, Sommer-Wagner S (2007) Genetic characteristics of infectious bursal disease viruses from four continents. Virology 365(2):369–375. https://doi.org/10.1016/j.virol.2007.03.046

    Article  CAS  PubMed  Google Scholar 

  12. Islam MR, Nooruzzaman M, Rahman T, Mumu TT, Rahman MM, Chowdhury EH, Eterradossi N, Müller H (2021) A unified genotypic classification of infectious bursal disease virus based on both genome segments. Avian Pathol 50(2):190–206. https://doi.org/10.1080/03079457.2021.1873245

    Article  CAS  PubMed  Google Scholar 

  13. Graziosi G, Catelli E, Fanelli A, Lupini C (2022) Infectious bursal disease virus in free-living wild birds: a systematic review and meta-analysis of its sero-viroprevalence on a global scale. Transbound Emerg Dis 69(5):2800–2815. https://doi.org/10.1111/tbed.14433

    Article  PubMed  Google Scholar 

  14. Tomás G, Marandino A, Courtillon C, Amelot M, Keita A, Pikula A, Hernández M, Hernández D, Vagnozzi A, Panzera Y, Domańska-Blicharz K, Eterradossi N, Pérez R, Soubies SM (2019) Antigenicity, pathogenicity and immunosuppressive effect caused by a South American isolate of infectious bursal disease virus belonging to the “distinct” genetic lineage. Avian Pathol 48(3):245–254. https://doi.org/10.1080/03079457.2019.1572867

    Article  CAS  PubMed  Google Scholar 

  15. Lupini C, Giovanardi D, Pesente P, Bonci M, Felice V, Rossi G, Morandini E, Cecchinato M, Catelli E (2016) A molecular epidemiology study based on VP2 gene sequences reveals that a new genotype of infectious bursal disease virus is dominantly prevalent in Italy. Avian Pathol 45:458–464. https://doi.org/10.1080/03079457.2016.1165792

    Article  CAS  PubMed  Google Scholar 

  16. Michel LO, Jackwood DJ (2017) Classification of infectious bursal disease virus into genogroups. Arch Virol 162:3661–3670. https://doi.org/10.1007/s00705-017-3500-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Fan L, Jiang N, Gao L, Li K, Gao Y, Liu C, Cui H, Pan Q, Zhang Y, Wang X, Qi X (2021) An improved scheme for infectious bursal disease virus genotype classification based on both genome-segments A and B. J Integr Agric 20:1372–1381. https://doi.org/10.1016/S2095-3119(20)63424-4

    Article  CAS  Google Scholar 

  18. Pikuła A, Lisowska A (2022) Genetics and pathogenicity of natural reassortant of infectious bursal disease virus emerging in latvia. Pathogens 11(10):1081. https://doi.org/10.3390/pathogens11101081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jackwood DJ, Schat KA, Michel LO, de Wit S (2018) A proposed nomenclature for infectious bursal disease virus isolates. Avian Pathol 47(6):576–584. https://doi.org/10.1080/03079457.2018.1506092

    Article  CAS  PubMed  Google Scholar 

  20. Nooruzzaman M, Hossain I, Rahman MM, Uddin AJ, Mustari A, Parvin R, Chowdhury EH, Islam MR (2022) Comparative pathogenicity of infectious bursal disease viruses of three different genotypes. Microb Pathog 169:105641. https://doi.org/10.1016/j.micpath.2022.105641

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Jiang N, Fan L, Niu X, Zhang W, Huang M, Gao L, Li K, Gao Y, Liu C, Cui H, Liu A, Pan Q, Zhang Y, Wang X, Qi X (2021) Identification and pathogenicity evaluation of a novel reassortant infectious bursal disease virus (Genotype A2dB3). Viruses 13(9):1682. https://doi.org/10.3390/v13091682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang N, Wang Y, Zhang W, Niu X, Gao Y, Gao L, Li K, Cui H, Liu A, Pan Q, Liu C, Zhang Y, Wang X, Qi X (2021) Naturally occurring mutated infectious bursal disease virus of genotype A8B1 associated with bursa damage in China. Virus Res 302:198498. https://doi.org/10.1016/j.virusres.2021.198498

    Article  CAS  PubMed  Google Scholar 

  23. Jiang N, Wang Y, Zhang W, Niu X, Huang M, Gao Y, Liu A, Gao L, Li K, Pan Q, Liu C, Zhang Y, Cui H, Wang X, Qi X (2021) Genotyping and molecular characterization of infectious bursal disease virus identified in important poultry-raising areas of China during 2019 and 2020. Front Vet Sci 8:759861. https://doi.org/10.3389/fvets.2021.759861

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cao YC, Yeung WS, Law M, Bi YZ, Leung FC, Lim BL (1998) Molecular characterization of seven Chinese isolates of infectious bursal disease virus: classical, very virulent, and variant strains. Avian Dis 42(2):340–351. https://www.jstor.org/stable/1592484

  25. Sapats SI, Ignjatovic J (2000) Antigenic and sequence heterogeneity of infectious bursal disease virus strains isolated in Australia. Arch Virol 145:773–785. https://doi.org/10.1007/s007050050670

    Article  CAS  PubMed  Google Scholar 

  26. Silva FM, Vidigal PM, Myrrha LW, Fietto JL, Silva A Jr, Almeida MR (2013) Tracking the molecular epidemiology of Brazilian Infectious bursal disease virus (IBDV) isolates. Infect Genet Evol 13:18–26. https://doi.org/10.1016/j.meegid.2012.09.005

    Article  PubMed  Google Scholar 

  27. Le XTK, Doan HTT, Do RT, Le TH (2019) Molecular characterization of field isolates of infectious bursal disease virus from three decades, 1987–2018, reveals a distinct genotypic subgroup in Vietnam. Arch Virol 164(8):2137–2145. https://doi.org/10.1007/s00705-019-04287-w

    Article  CAS  PubMed  Google Scholar 

  28. Hou B, Wang CY, Luo ZB, Shao GQ (2022) Commercial vaccines used in China do not protect against a novel infectious bursal disease virus variant isolated in Fujian. Vet Rec 191(10):e1840. https://doi.org/10.1002/vetr.1840

    Article  PubMed  Google Scholar 

  29. To H, Yamaguchi T, Nguyen NT, Nguyen OT, Nguyen SV, Agus S, Kim HJ, Fukushi H, Hirai K (1999) Sequence comparison of the VP2 variable region of infectious bursal disease virus isolates from Vietnam. J Vet Med Sci 61(4):429–432. https://doi.org/10.1292/jvms.61.429

    Article  CAS  PubMed  Google Scholar 

  30. Aliyu HB, Hair-Bejo M, Omar AR, Ideris A (2021) Genetic diversity of recent infectious bursal disease viruses isolated from vaccinated poultry flocks in Malaysia. Front Vet Sci 8:643976. https://doi.org/10.3389/fvets.2021.643976

    Article  PubMed  PubMed Central  Google Scholar 

  31. Franciosini MP, Davidson IA (2022) Walk through Gumboro disease. Poultry 1:229–243. https://doi.org/10.3390/poultry1040020

    Article  Google Scholar 

  32. Wu T, Wang Y, Li H, Fan L, Jiang N, Gao L, Li K, Gao Y, Liu C, Cui H, Pan Q, Zhang Y, Wang X, Qi X (2020) Naturally occurring homologous recombination between novel variant infectious bursal disease virus and intermediate vaccine strain. Vet Microbiol 245:108700. https://doi.org/10.1016/j.vetmic.2020.108700

    Article  CAS  PubMed  Google Scholar 

  33. OIE (2018) Infectious bursal disease (Gumboro disease). In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2018. World Organisation for Animal Health. Terrestrial Manual Online Access: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access/3.03.12_IBD.pdf. Accessed 22 Dec 2022

  34. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Junier T, Zdobnov EM (2010) The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26(13):1669–1670. https://doi.org/10.1093/bioinformatics/btq243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rambaut A (2018) FigTree, version 1.4.4. http://tree.bio.ed.ac.uk/software/figtree/.

  37. Brown MD, Green P, Skinner MA (1992) VP2 sequences of recent European “very virulent” isolates of infectious bursal disease virus are closely related to each other but are distinct from those of “classical” strains. J Gen Virol 75(3):675–680. https://doi.org/10.1099/0022-1317-75-3-675

    Article  Google Scholar 

  38. Lazarus D, Pasmanik-Chor M, Gutter B, Gallili G, Barbakov M, Krispel S, Pitcovski J (2008) Attenuation of very virulent infectious bursal disease virus and comparison of full sequences of virulent and attenuated strains. Avian Pathol 37(2):151–159. https://doi.org/10.1080/03079450801910206

    Article  CAS  PubMed  Google Scholar 

  39. Lian J, Wang Z, Xu Z, Pang Y, Leng M, Tang S, Zhang X, Qin J, Chen F, Lin W (2022) Pathogenicity and molecular characterization of infectious bursal disease virus in China. Poult Sci 101(1):101502. https://doi.org/10.1016/j.psj.2021.101502

    Article  CAS  PubMed  Google Scholar 

  40. He X, Xiong Z, Yang L, Guan D, Yang X, Wei P (2014) Molecular epidemiology studies on partial sequences of both genome segments reveal that reassortant infectious bursal disease viruses were dominantly prevalent in southern China during 20002012. Arch Virol 159(12):3279–3292. https://doi.org/10.1007/s00705-014-2195-z

    Article  CAS  PubMed  Google Scholar 

  41. Chen Z, Lian J, Liang Z, Leng M, Lin W, Chen F (2022) Characterization and pathogenicity of infectious bursal disease virus in Southern China. Poult Sci 101(10):102018. https://doi.org/10.1016/j.psj.2022.102018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thai TN, Jang I, Kim HA, Kim HS, Kwon YK, Kim HR (2021) Characterization of antigenic variant infectious bursal disease virus strains identified in South Korea. Avian Pathol 50(2):174–181. https://doi.org/10.1080/03079457.2020.1869698

    Article  CAS  PubMed  Google Scholar 

  43. Patel AK, Pandey VC, Pal JK (2016) Evidence of genetic drift and reassortment in infectious bursal disease virus and emergence of outbreaks in poultry farms in India. Virusdisease 27:161–169. https://doi.org/10.1007/s13337-016-0306-z

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ali Khan RS, Habib M, Ali W, Salah Ud Din Shah M, Ashraf A, Ali Tahir Z, Helal ZH, Khan MI, Mahboob S, A-Al-Ghanim K, Al-Misned F (2019) Phylogenetic analysis of infectious bursal disease viruses according to newly proposed model of classification into geno-groups. J Infect Public Health 12(3):410–418. https://doi.org/10.1016/j.jiph.2018.12.012

    Article  PubMed  Google Scholar 

  45. Hussain A, Wu T, Li H, Fan L, Li K, Gao L, Wang Y, Gao Y, Liu C, Cui H, Pan Q, Zhang Y, Aslam A, Muti-Ur-Rehman K, Munir M, Butt SL, Wang X, Qi X (2019) Pathogenic characterization and full length genome sequence of a reassortant infectious bursal disease virus newly isolated in Pakistan. Virol Sin 34(1):102–105. https://doi.org/10.1007/s12250-019-00082-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mató T, Medveczki A, Kiss I (2022) Research Note: “Hidden” infectious bursal disease virus infections in Central Europe. Poult Sci 101(8):101958. https://doi.org/10.1016/j.psj.2022.101958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abed M, Soubies S, Courtillon C, Briand FX, Allée C, Amelot M, De Boisseson C, Lucas P, Blanchard Y, Belahouel A, Kara R, Essalhi A, Temim S, Khelef D, Eterradossi N (2018) Infectious bursal disease virus in Algeria: detection of highly pathogenic reassortant viruses. Infect Genet Evol 60:48–57. https://doi.org/10.1016/j.meegid.2018.01.029

    Article  PubMed  Google Scholar 

  48. Drissi Touzani C, Fellahi S, Fassi Fihri O, Gaboun F, Khayi S, Mentag R, Lico C, Baschieri S, El Houadfi M, Ducatez M (2020) Complete genome analysis and time scale evolution of very virulent infectious bursal disease viruses isolated from recent outbreaks in Morocco. Infect Genet Evol 77:104097. https://doi.org/10.1016/j.meegid.2019.104097

    Article  CAS  PubMed  Google Scholar 

  49. Mosad SM, Eladl AH, El-Tholoth M, Ali HS, Hamed MF (2020) Molecular characterization and pathogenicity of very virulent infectious bursal disease virus isolated from naturally infected turkey poults in Egypt. Trop Anim Health Prod 52(6):3819–3831. https://doi.org/10.1007/s11250-020-02420-5

    Article  PubMed  Google Scholar 

  50. Arowolo OA, George UE, Luka PD, Maurice NA, Atuman YJ, Shallmizhili JJ, Shittu I, Oluwayelu DO (2021) Infectious bursal disease in Nigeria: continuous circulation of reassortant viruses. Trop Anim Health Prod 53(2):271. https://doi.org/10.1007/s11250-021-02719-x

    Article  CAS  PubMed  Google Scholar 

  51. Stoute ST, Jackwood DJ, Sommer-Wagner SE, Crossley BM, Woolcock PR, Charlton BR (2013) Pathogenicity associated with coinfection with very virulent infectious bursal disease and Infectious bursal disease virus strains endemic in the United States. J Vet Diagn Invest 25(3):352–358. https://doi.org/10.1177/1040638713483538

    Article  PubMed  Google Scholar 

  52. Hernández M, Tomás G, Marandino A, Iraola G, Maya L, Mattion N, Hernández D, Villegas P, Banda A, Panzera Y, Pérez R (2015) Genetic characterization of South American infectious bursal disease virus reveals the existence of a distinct worldwide-spread genetic lineage. Avian Pathol 44(3):212–221. https://doi.org/10.1080/03079457.2015.1025696

    Article  PubMed  Google Scholar 

  53. Stuart JC (1989) Acute infectious bursal disease in poultry. Vet Rec 125:281

    Article  CAS  PubMed  Google Scholar 

  54. Chettle NJ, Stuart JC, Wyeth PJ (1989) Outbreaks of virulent infectious bursal disease in East Anglia. Vet Rec 125:271–272. https://doi.org/10.1136/vr.125.10.271

    Article  CAS  PubMed  Google Scholar 

  55. Ignjatovic J, Sapats S (2002) Confirmation of the existence of two distinct genetic groups of infectious bursal disease virus in Australia. Aust Vet J 80(11):689–694. https://doi.org/10.1111/j.1751-0813.2002.tb11299.x

    Article  CAS  PubMed  Google Scholar 

  56. Mwenda R, Changula K, Hang’ombe BM, Chidumayo N, Mangani AS, Kaira T, Takada A, Mweene AS, Simulundu E (2018) Characterization of field infectious bursal disease viruses in Zambia: evidence of co-circulation of multiple genotypes with predominance of very virulent strains. Avian Pathol 47(3):300–313. https://doi.org/10.1080/03079457.2018.1449941

    Article  PubMed  Google Scholar 

  57. Feng X, Zhu N, Cui Y, Hou L, Zhou J, Qiu Y, Yang X, Liu C, Wang D, Guo J, Sun T, Shi Y, Han N, Mo M, Liu J (2022) Characterization and pathogenicity of a naturally reassortant and recombinant infectious bursal disease virus in China. Transbound Emerg Dis 69(4):e746–e758. https://doi.org/10.1111/tbed.14347

    Article  CAS  PubMed  Google Scholar 

  58. Diel DG, da Silva LH, Liu H, Wang Z, Miller PJ, Afonso CL (2012) Genetic diversity of avian paramyxovirus type 1: proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. Infect Genet Evol 12(8):1770–1779. https://doi.org/10.1016/j.meegid.2012.07.012

    Article  PubMed  Google Scholar 

  59. Dimitrov KM, Abolnik C, Afonso CL, Albina E, Bahl J, Berg M et al (2019) Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infect Genet Evol 74:103917. https://doi.org/10.1016/j.meegid.2019.103917

    Article  PubMed  PubMed Central  Google Scholar 

  60. Valastro V, Holmes EC, Britton P, Fusaro A, Jackwood MW, Cattoli G, Monne I (2016) S1 gene-based phylogeny of infectious bronchitis virus: an attempt to harmonize virus classification. Infect Genet Evol 39:349–364. https://doi.org/10.1016/j.meegid.2016.02.015

    Article  PubMed  PubMed Central  Google Scholar 

  61. World Health Organization/World Organisation for Animal Health/Food and Agriculture Organization (WHO/OIE/FAO) (2014) H5N1 Evolution Working Group. Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses. Influenza Other Respir Viruses 8(3):384–388. https://doi.org/10.1111/irv.12230.

  62. Fan L, Wu T, Wang Y, Hussain A, Jiang N, Gao L, Li K, Gao Y, Liu C, Cui H, Pan Q, Zhang Y, Wang X, Qi X (2020) Novel variants of infectious bursal disease virus can severely damage the bursa of fabricius of immunized chickens. Vet Microbiol 240:108507. https://doi.org/10.1016/j.vetmic.2019.108507

    Article  CAS  PubMed  Google Scholar 

  63. Bao K, Qi X, Li Y, Gong M, Wang X, Zhu P (2022) Cryo-EM structures of infectious bursal disease viruses with different virulences provide insights into their assembly and invasion. Sci Bull (Beijing) 67(6):646–654. https://doi.org/10.1016/j.scib.2021.12.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106.02-2020.03 (PI: Xuyen Thi Kim Le). We express our thanks to colleagues for their kind provision of the field materials used in this study.

Funding

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106.02-2020.03.

Author information

Authors and Affiliations

Authors

Contributions

XTKL supervised the laboratory work and analyzed the datasets for the manuscript draft. RTD, HTTD, KTN, and LTKP collected, processed, and performed experiments and sequence analysis. THL finalized the datasets, tables, and figures and wrote, revised, completed, and approved the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Thanh Hoa Le.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: William G Dundon .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, X.T.K., Do, R.T., Doan, H.T.T. et al. Phylogenotyping of infectious bursal disease virus in Vietnam according to the newly unified genotypic classification scheme. Arch Virol 168, 201 (2023). https://doi.org/10.1007/s00705-023-05830-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05830-6

Navigation