Skip to main content

Advertisement

Log in

The dynamics of SARS-CoV-2 infection in unvaccinated and vaccinated populations in Mumbai, India, between 28 December 2020 and 30 August 2021

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The emergence and evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants that could compromise vaccine efficacy (VE) with re-infections in immunized individuals have necessitated continuous surveillance of VE. Here, the occurrence and dynamics of SARS-CoV-2 infections in the context of vaccination during the second wave of infection in Mumbai were evaluated. RT-PCR cycle threshold (Ct) values of the open reading frame (ORF)/envelope (E)/nucleocapsid (N) genes obtained from a total of 42415 samples, comprising unvaccinated (96.88%) and vaccinated cases (3.12%) were analyzed between December 28, 2020, and August 30, 2021. A lower incidence of SARS-CoV-2 infection in fully vaccinated cases (5.07%) compared to partially vaccinated cases (6.5%) and unvaccinated cases (13.453%) was recorded. VE was significant after the first dose of vaccination (ORF gene p-value = 0.003429, and E/N gene p-value = 0.000866). Furthermore, VE was observed to be significant when the post-immunization (first dose) period was stratified to within 30 days (ORF gene p-value = 0.0094 and E/N gene p-value = 0.0023) and to 60 days following the second dose of vaccination (ORF gene p-value = 0.0238). Also, significantly higher efficacy was observed within individuals receiving two doses compared to a single dose (ORF gene p-value = 0.0132 and E/N gene p-value = 0.0387). The emergence of breakthrough infections was also evident (odds ratio= 0.34; 95% confidence interval= 0.27–0.43). Interestingly, viral loads trended towards being higher in some groups of partially vaccinated individuals compared to completely vaccinated and unvaccinated populations. Finally, our results delineated a significantly higher incidence of SARS-CoV-2 acquisition in males, asymptomatic individuals, individuals with comorbidities, and those who were unvaccinated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material:

Data made available online

References

  1. Cucinotta D, Vanelli M (2020) WHO declares COVID-19 a pandemic. Acta Biomed 91:157–160. https://doi.org/10.23750/abm.v91i1.9397

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brodeur A, Gray D, Islam A, Bhuiyan S (2021) A literature review of the economics of COVID-19. J Econ Surv 35(4):1007–1044. https://doi.org/10.1111/joes.12423

    Article  PubMed  PubMed Central  Google Scholar 

  3. WHO (2021a) SARS-CoV-2 Delta variant now dominant in much of European region; efforts must be reinforced to prevent transmission, warns WHO Regional Office for Europe and ECDC. http://www.euro.who.int/en/media-centre/sections/press-releases/2021/sars-cov-2-delta-variant-now-dominantin-much-of-european-region-efforts-must-be-reinforced-toprevent-transmission,-warns-who-regional-office-for-europeand-ecdc. Accessed on 8th March 2022

  4. WHO, Technical Advisory Group on SARS-CoV-2 Virus Evolution (TAG-VE) (2021b). Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern. http://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variantof-concern. Accessed on 8th March 2022

  5. Dong Ensheng Du, Hongru G (2020) Lauren An interactive web-based dashboard to track COVID-19 in real-time. Lancet Infect Dis 20(5):533–34. https://ourworldindata.org/explorers/coronavirus-data-explorer. Accessed on May 16, 2022

  6. Rajeshbhai SP, Dhar SS, Shalabh (2022) Fourth wave of COVID-19 in India: Statistical forecasting. medRxiv 2022.02.23.22271382. doi: https://doi.org/10.1101/2022.02.23.22271382

  7. Munne K, Bhanothu V, Bhor V et al (2021) Detection of SARS-CoV-2 infection by RT-PCR test: factors influencing interpretation of results. Virusdisease 32(2):1–3. https://doi.org/10.1007/s13337-021-00692-5

    Article  CAS  Google Scholar 

  8. Peiris M, Leung GM (2020) What can we expect from first-generation COVID-19 vaccines? Lancet 396(1026):1467–1469. https://doi.org/10.1016/S0140-6736(20)31976-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. WHO (2022) COVID-19 vaccines. Status of COVID-19 vaccines within WHO EUL/PQ evaluation process. https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_08November2022.pdf Accessed on 18th November 2022

  10. COVID-19 vaccines approved in the country (2023) https://cdsco.gov.in/opencms/opencms/system/modules/CDSCO.WEB/elements/download_file_division.jsp?num_id=OTA4MQ==. Accessed on January 20, 2023

  11. Edouard M, Ritchie H, Rodés-Guirao L et al (2020) Coronavirus Pandemic (COVID-19). Published online at OurWorldInData.org. Retrieved from: ‘https://ourworldindata.org/coronavirus’ [Online Resource]. https://ourworldindata.org/covid-vaccinations#citation Accessed on December 19, 2022

  12. Accorsi EK, Britton A, Fleming-Dutra KE et al (2022) Association between 3 doses of mRNA COVID-19 vaccine and symptomatic infection caused by the SARS-CoV-2 Omicron and Delta variants. JAMA 327(7):639–651. https://doi.org/10.1001/jama.2022.0470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pajon R, Paila YD, Girard B et al (2022) Initial analysis of viral dynamics and circulating viral variants during the mRNA-1273 Phase 3 COVE trial. Nat Med 28:823–830. https://doi.org/10.1038/s41591-022-01679-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singanayagam A, Hakki S, Dunning J et al (2022) ATACCC Study Investigators. Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a prospective, longitudinal, cohort study. Lancet Infect Dis 22(2):183–195. doi: https://doi.org/10.1016/S1473-3099(21)00648-4. Erratum in: Lancet Infect Dis. 2021;21(12): e363

  15. Zeng G, Wu Q, Pan H et al (2022) Immunogenicity and safety of a third dose of CoronaVac, and immune persistence of a two-dose schedule, in healthy adults: interim results from two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials. Lancet Infect Dis 22(4):483–495. https://doi.org/10.1016/S1473-3099(21)00681-2

    Article  CAS  PubMed  Google Scholar 

  16. Kustin T, Harel N, Finkel U et al (2021) Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals. Nat Med 27:1379–1384. https://doi.org/10.1038/s41591-021-01413-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hacisuleyman E, Hale C, Saito Y et al (2021) Vaccine breakthrough infections with SARS-CoV‐2 variants. N Engl J Med 384(23):2212–2218. https://doi.org/10.1056/NEJMoa2105000

    Article  CAS  PubMed  Google Scholar 

  18. Chemaitelly H, Yassine HM, Benslimane FM et al (2021) mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nat Med 27:1614–1621. https://doi.org/10.1038/s41591-021-01446-y

    Article  CAS  PubMed  Google Scholar 

  19. Chen JM, Sun YX, Chen JW (2020) Potential for elimination of SAR-CoV-2 through vaccination as inspired by elimination of multiple influenza viruses through natural pandemics or mass vaccination. J Med Virol 92(11):2453–2457. https://doi.org/10.1002/jmv.26162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bobdey S, Kaushik SK, Sahu R et al (2021) Effectiveness of ChAdOx1 nCOV-19 Vaccine: Experience of a tertiary care institute. Med J Armed Forces India 77(Suppl 2):S271–S277. https://doi.org/10.1016/j.mjafi.2021.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dhumal S, Patil A, More A et al (2022) SARS-COV-2 reinfection after previous infection and vaccine breakthrough infection through the second wave of pandemic in India: An observational study. Int J Infect Dis 118:95–103. https://doi.org/10.1016/j.ijid.2022.02.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abhilash KPP, Mathiyalagan P, Krishnaraj VRK et al (2022) Impact of prior vaccination with Covishield ™ and Covaxin ® on mortality among symptomatic COVID-19 patients during the second wave of the pandemic in South India during April and May 2021: a cohort study. Vaccine 40(13):2107–2113. https://doi.org/10.1016/j.vaccine.2022.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Malhotra S, Mani K, Lodha R et al (2022) COVID Reinfection AIIMS Consortium. SARS-CoV-2 reinfection rate and estimated effectiveness of the inactivated whole virion vaccine BBV152 against reinfection among health care workers in New Delhi, India. JAMA Netw Open 5(1):e2142210. https://doi.org/10.1001/jamanetworkopen.2021.42210

    Article  PubMed  PubMed Central  Google Scholar 

  24. Parida SP, Sahu DP, Singh AK et al (2022) Adverse events following immunization of COVID-19 (Covaxin) vaccine at a tertiary care center of India. J Med Virol 94(6):2453–2459. https://doi.org/10.1002/jmv.27655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singanayagam A, Patel M, Charlett A et al (2020) Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Euro Surveill 25(32):2001483. https://doi.org/10.2807/1560-7917.ES.2020.25.32.2001483. Erratum in: Euro Surveill. 2021;26(7): PMID: 32794447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuhlmann C, Mayer CK, Claassen M et al (2022) Breakthrough infections with SARS-CoV-2 Omicron despite mRNA vaccine booster dose. Correspondence Lancet 399(10325):625–626. https://doi.org/10.1016/S0140-6736(22)00090-3

    Article  CAS  PubMed  Google Scholar 

  27. WHO (2022) Tracking SARS-CoV-2 variants. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. Accessed on 20th April 2022

  28. Kreier F (2022) Deltacron: the story of the variant that wasn’t. Nature 602(7895):19. https://doi.org/10.1038/d41586-022-00149-9

    Article  CAS  PubMed  Google Scholar 

  29. Kumar S, Karuppanan K, Subramaniam G (2022) Omicron (BA.1) and sub-variants (BA.1, BA.2 and BA.3) of SARS-CoV-2 spike infectivity and pathogenicity: A comparative sequence and structural-based computational assessment. https://doi.org/10.1101/2022.02.11.480029. bioRxiv 2022.02.11.480029

  30. Klaassen F, Chitwood MH, Cohen T et al (2022) Population immunity to pre-Omicron and Omicron SARS-CoV-2 variants in US states and counties through December 1, 2021. medRxiv.2021.12.23.21268272. https://doi.org/10.1101/2021.12.23.21268272

  31. Dhar MS, Marwal R, Vs R et al (2021) Indian SARS-CoV-2 Genomics Consortium (INSACOG); Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. Science 374(6570):995–999. https://doi.org/10.1126/science.abj9932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Delanghe JR, Speeckaert MM, De Buyzere ML (2020) The host’s angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections. Clin Chim Acta 505:192–193. https://doi.org/10.1016/j.cca.2020.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lipsitch M, Dean NE (2020) Understanding COVID-19 vaccine efficacy. Science 370(6518):763–765. https://doi.org/10.1126/science.abe5938

    Article  CAS  PubMed  Google Scholar 

  34. Davies NG, Abbott S, Barnard RC, COVID-19 Genomics UK (COG-UK) Consortium (2021) CMMID COVID-19 Working Group;. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372(6538):eabg3055. doi: https://doi.org/10.1126/science.abg3055

  35. Regev-Yochay G, Amit S, Bergwerk M et al (2021) Decreased infectivity following BNT162b2 vaccination: A prospective cohort study in Israel. Lancet Reg Health Eur 7:100150. https://doi.org/10.1016/j.lanepe.2021.100150

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mahallawi WH, Alsamiri AD, Dabbour AF et al (2021) Association of viral load in SARS-CoV-2 patients with age and gender. Front Med 8:608215. https://doi.org/10.3389/fmed.2021.608215

    Article  Google Scholar 

  37. Bailly B, Guilpain L, Bouiller K et al (2022) BNT162b2 messenger RNA vaccination did not prevent an outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 Variant 501Y. V2 in an elderly nursing home but reduced transmission and disease severity. Clin Infect Dis 74(3):517–520. https://doi.org/10.1093/cid/ciab446

    Article  CAS  PubMed  Google Scholar 

  38. Alahmari AA, Khan AA, Elganainy A et al (2021) Epidemiological and clinical features of COVID-19 patients in Saudi Arabia. J Infect Public Health 14(4):437–443. https://doi.org/10.1016/j.jiph.2021.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pritchard E, Matthews PC, Stoesser N et al (2021) Impact of vaccination on new SARS-CoV-2 infections in the United Kingdom. Nat Med 27(8):1370–1378. https://doi.org/10.1038/s41591-021-01410-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shastri J, Parikh S, Aggarwal V et al (2021) Severe SARS-CoV-2 breakthrough reinfection with Delta variant after recovery from breakthrough infection by Alpha variant in a fully vaccinated health worker. Front Med 8:737007. https://doi.org/10.3389/fmed.2021.737007

    Article  Google Scholar 

  41. Mlcochova P, Kemp SA, Dhar MS et al (2021) Indian SARS-CoV-2 Genomics Consortium (INSACOG); Genotype to Phenotype Japan (G2P-Japan) Consortium; CITIID-NIHR BioResource COVID-19 Collaboration; SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599(7883):114–119. https://doi.org/10.1038/s41586-021-03944-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Richterman A, Meyerowitz EA, Cevik M (2022) Indirect protection by reducing transmission: ending the pandemic with Severe Acute Respiratory Syndrome Coronavirus 2 vaccination. Open Forum Infect Dis 9(2):ofab259. https://doi.org/10.1093/ofid/ofab259

    Article  CAS  PubMed  Google Scholar 

  43. Levine-Tiefenbrun M, Yelin I, Katz R et al (2021) Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat Med 27:790–792. https://doi.org/10.1038/s41591-021-01316-7

    Article  CAS  PubMed  Google Scholar 

  44. Marks M, Millat-Martinez P, Ouchi D et al (2021) Transmission of COVID-19 in 282 clusters in Catalonia, Spain: a cohort study. Lancet Infect Dis 21(5):629–636. https://doi.org/10.1016/S1473-3099(20)30985-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jeffery-Smith A, Iyanger N, Williams SV et al (2021) Antibodies to SARS-CoV-2 protect against re-infection during outbreaks in care homes, September and October 2020. Euro Surveill 26(5):2100092. https://doi.org/10.2807/1560-7917.ES.2021.26.5.2100092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jawade K, Sinha AY, Bhagat S et al (2021) A novel ORF1a-based SARS-CoV-2 RT-PCR assay to resolve inconclusive samples. Int J Infect Dis 106:395–400. https://doi.org/10.1016/j.ijid.2021.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pande S, Bhanothu V, Mayekar A et al (2022) An approach to resolve uncertainty in COVID-19 diagnosis due to inconclusive results from RT-PCR test. J Assoc Physicians India 70(6):11–12 PMID: 35702857

    PubMed  Google Scholar 

  48. Voysey M, Costa Clemens SA, Madhi SA et al (2021) Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet 397(10277):881–891. https://doi.org/10.1016/S0140-6736(21)00432-3. Erratum in: Lancet. 397(10277):880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yelin I, Katz R, Herzel E et al (2021) Associations of the BNT162b2 COVID-19 vaccine effectiveness with patient age and comorbidities. https://doi.org/10.1101/2021.03.16.21253686. medRxiv.2021.03.16.21253686

  50. Hyams C, Marlow R, Maseko Z et al (2021) Effectiveness of BNT162b2 and ChAdOx1 nCoV-19 COVID-19 vaccination at preventing hospitalisations in people aged at least 80 years: a test-negative, case-control study. Lancet Infect Dis 21(11):1539–1548. https://doi.org/10.1016/S1473-3099(21)00330-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harder T, Koch J, Vygen-Bonnet S et al (2021) Efficacy and effectiveness of COVID-19 vaccines against SARS-CoV-2 infection: interim results of a living systematic review, 1 January to 14 May 2021. Eurosurveillance 26(28):2100563. https://doi.org/10.2807/1560-7917.ES.2021.26.28.2100563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tartof SY, Slezak JM, Fischer H et al (2021) Six-month effectiveness of BNT162B2 mRNA COVID-19 vaccine in a large US integrated health system: A retrospective cohort study [Internet]. Rochester, NY: Social Science Research Network; 2021 Aug [cited 2021 Sep 15]. Report No.: ID 3909743. Available from: https://papers.ssrn.com/abstract=3909743

  53. Nordström P, Ballin M, Nordström A (2021) Effectiveness of Covid-19 vaccination against risk of symptomatic infection, hospitalization, and death up to 9 months: A Swedish total-population cohort study [Internet]. Rochester, NY: Social Science Research Network; 2021 Oct [cited 2021 Nov 17]. Report No.: ID 3949410. Available from: https://papers.ssrn.com/abstract=3949410

  54. Pegu A, O’Connell SE, Schmidt SD et al (2021) Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants. Science 373(6561):1372–1377. https://doi.org/10.1126/science.abj4176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mukherjee S, Pahan K (2021) Is COVID-19 Gender-sensitive? J Neuroimmune Pharmacol 16(1):38–47. https://doi.org/10.1007/s11481-020-09974-z

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gadi N, Wu SC, Spihlman AP, Moulton VR (2020) What’s sex got to do with COVID-19? Gender-based differences in the host immune response to coronaviruses. Front Immunol 11:2147. https://doi.org/10.3389/fimmu.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. La Vignera S, Cannarella R, Condorelli RA et al (2020) Sex-specific SARS-CoV-2 mortality: among hormone-modulated ACE2 expression, risk of Venous Thromboembolism and Hypovitaminosis D. Int J Mol Sci 21(8):2948. https://doi.org/10.3390/ijms21082948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao Y, Zhao Z, Wang Y et al (2020) Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med 202(5):756–759. https://doi.org/10.1164/rccm.202001-0179LE Erratum in: Am J Respir Crit Care Med. 2021;203(6):782.

  59. Takahashi T, Ellingson MK, Wong P et al (2020) Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 588(7837):315–320. https://doi.org/10.1038/s41586-020-2700-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Day M (2021) Covid-19: stronger warnings are needed to curb socialising after vaccination, say doctors. BMJ 372:n783. https://doi.org/10.1136/bmj.n783

    Article  PubMed  Google Scholar 

  61. Moore S, Hill EM, Tildesley MJ et al (2021) Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study. Lancet Infect Dis 21(6):793–802. https://doi.org/10.1016/S1473-3099(21)00143-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chia WN, Zhu F, Ong SWX et al (2021) Dynamics of SARS-CoV-2 neutralising antibody responses and duration of immunity: a longitudinal study. Lancet Microbe 2(6):e240–e249. https://doi.org/10.1016/S2666-5247(21)00025-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dagan N, Barda N, Kepten E et al (2021) BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med 384(15):1412–1423. https://doi.org/10.1056/NEJMoa2101765

    Article  CAS  PubMed  Google Scholar 

  64. Cherian S, Potdar V, Jadhav S et al (2021) SARS-CoV-2 spike mutations, L452R, T478K, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. Microorganisms 9(7):1542. https://doi.org/10.3390/microorganisms9071542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garcia-Beltran WF, St Denis KJ, Hoelzemer A et al (2022) mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 185(3):457–466e4. https://doi.org/10.1016/j.cell.2021.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang P, Nair MS, Liu L et al (2021) Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593(7857):130–135. https://doi.org/10.1038/s41586-021-03398-2

    Article  CAS  PubMed  Google Scholar 

  67. Muik A, Lui BG, Wallisch AK et al (2022) Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited human sera. Science 375(6581):678–680. https://doi.org/10.1126/science.abn7591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Focosi D, Maggi F (2021) Neutralising antibody escape of SARS-CoV-2 spike protein: Risk assessment for antibody-based Covid-19 therapeutics and vaccines. Rev Med Virol 31(6):e2231. https://doi.org/10.1002/rmv.2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mueller AL, McNamara MS, Sinclair DA (2020) Why does COVID-19 disproportionately affect older people? Aging 12(10):9959–9981. https://doi.org/10.18632/aging.103344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Edara VV, Norwood C, Floyd K et al (2021) Infection- and vaccine-induced antibody binding and neutralization of the B.1.351 SARS-CoV-2 variant. Cell Host Microbe 29(4):516–521e3. https://doi.org/10.1016/j.chom.2021.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This research article has been reviewed and edited to improve clarity and address language usage issues by Dr. Vainav Patel, a co-author of this manuscript (VP) and a native speaker of the English language.

We acknowledge the encouragement and support from the Indian Council of Medical Research (ICMR), the Ministry for Health & Family Welfare, the Government of India, and all the NIRRCH COVID-19 testing and reporting team, Mumbai, India.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Venkanna Bhanothu or Shailesh Pande.

Ethics declarations

Conflict of interest

No conflicts of interest exist.

Ethical approval

The study was approved by the Institutional Ethics Committee of ICMR-NIRRCH (Letter No# D/ICEC/Sci-199/214/2021).

Additional information

Communicated by Pablo Pineyro

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Supplementary Fig. S1:

(a) RT-PCR outcomes of COVID-19 suspected cases with an increase in the interval between partial vaccination and the RT-PCR test. The RT-PCR outcomes of COVID-19 suspected cases were represented as a percentage (%). (b) RT-PCR outcomes of COVID-19 suspected cases with an increase in the duration between complete vaccination and the RT-PCR test. The RT-PCR outcomes of COVID-19 suspected cases were represented as a percentage (%).

Supplementary Fig. S2:

(a) Dynamics of age (in years) in COVID-19 suspected cases with an increase in the duration between partial vaccination and the RT-PCR test. The data were represented as mean ± SD in years. (b) Dynamics of age (in years) in COVID-19 suspected cases with an increase in the duration between complete vaccination and the RT-PCR test. The data were represented as mean ± SD in years

Supplementary Fig. S3

: (a) Dynamics of Ct values of SARS-CoV-2 genes (ORF1a/b/N2 gene and E/N gene) with an increase in the duration between partial vaccination and the RT-PCR test. The data were represented as mean ± SD. (b) Dynamics of Ct values of SARS-CoV-2 genes (ORF1a/b/N2 gene and E/N gene) with an increase in the duration between full vaccination and the RT-PCR test. The data were represented as mean ± SD

Supplementary Material 4

Supplementary Material 5

Supplementary Material 6

Supplementary Material 7

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhanothu, V., Munne, K., Pande, S. et al. The dynamics of SARS-CoV-2 infection in unvaccinated and vaccinated populations in Mumbai, India, between 28 December 2020 and 30 August 2021. Arch Virol 168, 188 (2023). https://doi.org/10.1007/s00705-023-05815-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05815-5

Keywords:

Navigation