Skip to main content
Log in

Full genotype characterization of Brazilian canine G3P[3] strains during a 10-year survey (2012–2021) of rotavirus infection in domestic dogs and cats

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

There is a dearth of information on the molecular epidemiology of rotaviruses in pets in Brazil. The aim of this study was to monitor rotavirus infections in household dogs and cats, determine full-genotype constellations, and obtain data on evolutionary relationships. Between 2012 and 2021, 600 fecal samples from dogs and cats (516 and 84, respectively) were collected at small animal clinics in São Paulo state, Brazil. Rotavirus screening was conducted using ELISA, PAGE, RT-PCR, sequencing, and phylogenetic analysis. Rotavirus type A (RVA) was detected in 0.5% (3/600) of the animals. No non-RVA types were detected. The three canine RVA strains were found to have a novel genetic constellation, G3-P[3] -I2-R3-C2-M3-A9-N2-T3-E3-H6, which has never been reported in dogs. As expected, all of the viral genes, except those encoding NSP2 and VP7, were closely related to the corresponding genes from canine, feline, and canine-like-human RVA strains. A novel N2 (NSP2) lineage was identified, grouping together Brazilian canine, human, rat and bovine strains, suggesting that genetic reassortment had occurred. Uruguayan G3 strains obtained from sewage contained VP7 genes that were phylogenetically close to those of the Brazilian canine strains, which suggests that these strains are widely distributed in pet populations in South American countries. For the NSP2 (I2), NSP3 (T3), NSP4 (E3), NSP5 (H6), VP1 (R3), VP3 (M3), and VP6 (I2) segments, phylogenetic analysis revealed possibly new lineages. The epidemiological and genetic data presented here point out the necessity for collaborative efforts to implement the One Health strategy in the field of RVA research and to provide an updated understanding of RVA strains circulating canines in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability statement

The genomic data used to support the findings of this study are openly available at the GenBank database. Any other data is available from the corresponding author upon request.

References

  1. Cook N, Bridger J, Kendall K, Gomara MI, El-Attar L, Gray J (2004) The zoonotic potential of rotavirus. J Infect 48:289–302. https://doi.org/10.1016/j.jinf.2004.01.018

    Article  PubMed  Google Scholar 

  2. Troeger C, Khalil IA, Rao PC, Cao S, Blacker BF, Ahmed T, Armah G, Bines JE, Brewer TG, Colombara DV, Kang G, Kirkpatrick BD, Kirkwood CD, Mwenda JM, Parashar UD, Petri WA Jr, Riddle MS, Steele AD, Thompson RL, Walson JL, Sanders JW, Mokdad AH, Murray CJL, Hay SI, Reiner RC Jr (2018) Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatr 172:958–965. https://doi.org/10.1001/jamapediatrics.2021.5393

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dhama K, Saminathan M, Karthik K, Tiwari R, Shabbir MZ, Kumar N, Malik YS, Singh RK (2015) Avian rotavirus enteritis—an updated review. Vet Q 35:142–158. https://doi.org/10.1080/01652176.2015.1046014

    Article  PubMed  Google Scholar 

  4. Otto PH, Rosenhain S, Elschner MC, Hotzel H, Machnowska P, Trojnar E, Hoffmann K, Johne R (2015) Detection of rotavirus species A, B and C in domestic mammalian animals with diarrhoea and genotyping of bovine species A rotavirus strains. Vet Microbiol 179:168–176. https://doi.org/10.1016/j.vetmic.2015.07.021

    Article  PubMed  Google Scholar 

  5. Charoenkul K, Janetanakit T, Bunpapong N, Boonyapisitsopa S, Tangwangvivat R, Suwannakarn K, Theamboonlers A, Poovorawan Y, Amonsin A (2021) Molecular characterization identifies intra-host recombination and zoonotic potential of canine rotavirus among dogs from Thailand. Transbound Emerg Dis 68:1240–1252. https://doi.org/10.1111/tbed.13778

    Article  CAS  PubMed  Google Scholar 

  6. Díaz Alarcón RG, Liotta DJ, Miño S (2022) Zoonotic RVA: state of the art and distribution in the animal world. Viruses 14:2554. https://doi.org/10.3390/v14112554

    Article  PubMed  PubMed Central  Google Scholar 

  7. Estes MK, Greenberg HB (2013) Rotaviruses. In: Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B (eds) Fields virology, 6th edn. Wolters Kluwer Health/Lippincott Williams and Wilkins, Philadelphia, pp 1347–1401

    Google Scholar 

  8. Johne R, Tausch SH, Grützke J, Falkenhagen A, Patzina-Mehling C, Beer M, Höper D, Ulrich RG (2019) Distantly related rotaviruses in common shrews, Germany, 2004–2014. Emerg Infect Dis 25:2310–2314. https://doi.org/10.3201/eid2512.191225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nagashima S, Kobayashi N, Ishino M, Alam MM, Ahmed MU, Paul SK, Ganesh B, Chawla-Sarkar M, Krishnan T, Naik TN, Wang YH (2008) Whole genomic characterization of a human rotavirus strain B219 belonging to a novel group of the genus rotavirus. J Med Virol 80:2023–2033. https://doi.org/10.1002/jmv.21286

    Article  CAS  PubMed  Google Scholar 

  10. Mihalov-Kovács E, Gellért Á, Marton S, Farkas SL, Fehér E, Oldal M, Jakab F, Martella V, Bányai K (2015) Candidate new rotavirus species in sheltered dogs, Hungary. Emerg Infect Dis 21:660–663. https://doi.org/10.3201/eid2104.141370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bányai K, Kemenesi G, Budinski I, Földes F, Zana B, Marton S, Varga-Kugler R, Oldal M, Kurucz K, Jakab F (2017) Candidate new rotavirus species in Schreiber’s bats, Serbia. Infect Genet Evol 48:19–26. https://doi.org/10.1016/j.meegid.2016.12.002

    Article  PubMed  Google Scholar 

  12. Phan TG, Leutenegger CM, Chan R, Delwart E (2017) Rotavirus I in feces of a cat with diarrhea. Virus Genes 53:487–490. https://doi.org/10.1007/s11262-017-1440-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vlasova AN, Amimo JO, Saif LJ (2017) Porcine rotaviruses: epidemiology, immune responses and control strategies. Viruses 9:48. https://doi.org/10.3390/v9030048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chasey D, Bridger JC, McCrae MA (1986) A new type of atypical rotavirus in pigs. Arch Virol 89:235–243. https://doi.org/10.1007/BF01309892

    Article  CAS  PubMed  Google Scholar 

  15. Martella V, Bányai K, Matthijnssens J, Buonavoglia C, Ciarlet M (2010) Zoonotic aspects of rotaviruses. Vet Microbiol 140:246–255. https://doi.org/10.1016/j.vetmic.2009.08.028

    Article  CAS  PubMed  Google Scholar 

  16. Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Bányai K, Brister JR, Buesa J, Esona MD, Estes MK, Gentsch JR, Iturriza-Gómara M, Johne R, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Parreño V, Rahman M, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Patton JT, Desselberger U, Van Ranst M (2011) Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 156:1397–1413. https://doi.org/10.1007/s00705-011-1006-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marshall JA, Kennett ML, Rodger SM, Studdert MJ, Thompson WL, Gust ID (1987) Virus and virus-like particles in the faeces of cats with and without diarrhoea. Aust Vet J 64:100–105. https://doi.org/10.1111/j.1751-0813.1987.tb09638.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang BK, Song DS, Jung KI, Lee CS, Park SJ, Oh JS, An DJ, Yang JS, Moon HJ, Lee SS, Yoon YD, Park BK (2007) Genetic characterization of canine rotavirus isolated from a puppy in Korea and experimental reproduction of disease. J Vet Diagn Investig 19:78–83. https://doi.org/10.1177/104063870701900112

    Article  Google Scholar 

  19. Oka T, Nakagomi T, Nakagomi O (2001) A lack of consistent amino acid substitutions in NSP4 between rotaviruses derived from diarrheal and asymptomatically-infected kittens. Microbiol Immunol 45:173–177. https://doi.org/10.1111/j.1348-0421.2001.tb01277.x

    Article  CAS  PubMed  Google Scholar 

  20. Papp H, Mihalov-Kovács E, Dóró R, Marton S, Farkas SL, Giammanco GM, De Grazia S, Martella V, Bányai K (2015) Full-genome sequencing of a Hungarian canine G3P[3] rotavirus A strain reveals high genetic relatedness with a historic Italian human strain. Virus Genes 50:310–315. https://doi.org/10.1007/s11262-014-1163-8

    Article  CAS  PubMed  Google Scholar 

  21. Sieg M, Rückner A, Köhler C, Burgener I, Vahlenkamp TW (2015) A bovine G8P[1] group A rotavirus isolated from an asymptomatically infected dog. J Gen Virol 96:106–114. https://doi.org/10.1099/vir.0.069120-0

    Article  CAS  PubMed  Google Scholar 

  22. Yan N, Tang C, Kan R, Feng F, Yue H (2019) Genome analysis of a G9P[23] group A rotavirus isolated from a dog with diarrhea in China. Infect Genet Evol 70:67–71. https://doi.org/10.1016/j.meegid.2019.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gauchan P, Sasaki E, Nakagomi T, Do LP, Doan YH, Mochizuki M, Nakagomi O (2015) Whole genotype constellation of prototype feline rotavirus strains FRV-1 and FRV64 and their phylogenetic relationships with feline-like human rotavirus strains. J Gen Virol 96:338–350. https://doi.org/10.1099/vir.0.070771-0

    Article  CAS  PubMed  Google Scholar 

  24. Marton S, Mihalov-Kovács E, Dóró R, Csata T, Fehér E, Oldal M, Jakab F, Matthijnssens J, Martella V, Bányai K (2015) Canine rotavirus C strain detected in Hungary shows marked genotype diversity. J Gen Virol 96:3059–3071. https://doi.org/10.1099/jgv.0.000237

    Article  CAS  PubMed  Google Scholar 

  25. Gabbay YB, Homem VSF, Munford V, Alves AS, Mascarenhas JDP, Linhares AC, Rácz ML (2003) Detection of rotavirus in dogs with diarrhea in Brazil. Braz J Microbiol 34:77–80. https://doi.org/10.1590/S1517-83822003000100016

    Article  Google Scholar 

  26. Ruiz VLA, Brandão PE, Gregori F, Rodriguez CAR, Souza SLP, Jerez JÁ (2009) Isolation of rotavirus from asymptomatic dogs in Brazil. Arq Bras Med Vet Zootec 61:996–999. https://doi.org/10.1590/S0102-09352009000400031

    Article  CAS  Google Scholar 

  27. Alves CDBT, Granados OFO, Budaszewski RDF, Streck AF, Weber MN, Cibulski SP, Pinto LD, Ikuta N, Canal CW (2018) Identification of enteric viruses circulating in a dog population with low vaccine coverage. Braz J Microbiol 49:790–794. https://doi.org/10.1016/j.bjm.2018.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramos CP, Diniz AN, Ribeiro MG, de Paula CL, Costa ÉA, Sonne L, Pereira ST, Lopes CEB, Rennó MC, Silva ROS (2021) Enteric organisms detected in feces of dogs with bloody diarrhea: 45 cases. Top Companion Anim Med 45:100549. https://doi.org/10.1016/j.tcam.2021.100549

    Article  PubMed  Google Scholar 

  29. Flores PS, Mendes CAS, Travassos CEPF, Mariano FA, Rangel MFN, Mendes GS, Santos N (2022) RVA in pet, sheltered, and stray dogs and cats in Brazil. Top Companion Anim Med 49:100667. https://doi.org/10.1016/j.tcam.2022.100667

    Article  PubMed  Google Scholar 

  30. Grant L, Esona M, Gentsch J, Watt J, Reid R, Weatherholtz R, Santosham M, Parashar U, O’Brien K (2011) Detection of G3P[3] and G3P[9] rotavirus strains in American Indian children with evidence of gene reassortment between human and animal rotaviruses. J Med Virol 83:1288–1299. https://doi.org/10.1002/jmv.22076

    Article  CAS  PubMed  Google Scholar 

  31. Luchs A, Cilli A, Morillo SG, Carmona Rde C, Timenetsky Mdo C (2012) Rare G3P[3] rotavirus strain detected in Brazil: possible human-canine interspecies transmission. J Clin Virol 54:89–92. https://doi.org/10.1016/j.jcv.2012.01.025

    Article  CAS  PubMed  Google Scholar 

  32. Wang YH, Pang BB, Zhou X, Ghosh S, Tang WF, Peng JS, Hu Q, Zhou DJ, Kobayashi N (2013) Complex evolutionary patterns of two rare human G3P[9] rotavirus strains possessing a feline/canine-like H6 genotype on an AU-1-like genotype constellation. Infect Genet Evol 16:103–112. https://doi.org/10.1016/j.meegid.2013.01.016

    Article  CAS  PubMed  Google Scholar 

  33. Okitsu S, Hikita T, Thongprachum A, Khamrin P, Takanashi S, Hayakawa S, Maneekarn N, Ushijima H (2018) Detection and molecular characterization of two rare G8P[14] and G3P[3] rotavirus strains collected from children with acute gastroenteritis in Japan. Infect Genet Evol 62:95–108. https://doi.org/10.1016/j.meegid.2018.04.011

    Article  CAS  PubMed  Google Scholar 

  34. Herring AJ, Inglis NF, Ojeh CK, Snodgrass DR, Menzies JD (1982) Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver-stained polyacrylamide gels. J Clin Microbiol 16:473–477. https://doi.org/10.1128/jcm.16.3.473-477.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gouvea V, Glass RI, Woods P, Taniguchi K, Clark HF, Forrester B, Fang ZY (1990) Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J Clin Microbiol 28:276–282. https://doi.org/10.1128/jcm.28.2.276-282.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Varghese V, Ghosh S, Das S, Bhattacharya SK, Krishnan T, Karmakar P, Kobayashi N, Naik TN (2006) Characterization of VP1, VP2 and VP3 gene segments of a human rotavirus closely related to porcine strains. Virus Genes 32:241–247. https://doi.org/10.1007/s11262-005-6908-y

    Article  CAS  PubMed  Google Scholar 

  37. Wang YH, Pang BB, Ghosh S, Zhou X, Shintani T, Urushibara N, Song YW, He MY, Liu MQ, Tang WF, Peng JS, Hu Q, Zhou DJ, Kobayashi N (2014) Molecular epidemiology and genetic evolution of the whole genome of G3P[8] human rotavirus in Wuhan, China, from 2000 through 2013. PLoS ONE 9:e88850. https://doi.org/10.1371/journal.pone.0088850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magagula NB, Esona MD, Nyaga MM, Stucker KM, Halpin RA, Stockwell TB, Seheri ML, Steele AD, Wentworth DE, Mphahlele MJ (2015) Whole genome analyses of G1P[8] rotavirus strains from vaccinated and non-vaccinated South African children presenting with diarrhea. J Med Virol 87:79–101. https://doi.org/10.1002/jmv.23971

    Article  CAS  PubMed  Google Scholar 

  39. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Agbemabiese CA, Nakagomi T, Damanka SA, Dennis FE, Lartey BL, Armah GE, Nakagomi O (2019) Sub-genotype phylogeny of the non-G, non-P genes of genotype 2 rotavirus A strains. PLoS ONE 14:e0217422. https://doi.org/10.1371/journal.pone.0217422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katz EM, Esona MD, Betrapally NS, La Cruz De, De Leon LA, Neira YR, Rey GJ, Bowen MD (2019) Whole-gene analysis of inter-genogroup reassortant rotaviruses from the Dominican Republic: emergence of equine-like G3 strains and evidence of their reassortment with locally-circulating strains. Virology 534:114–131. https://doi.org/10.1016/j.virol.2019.06.007

    Article  CAS  PubMed  Google Scholar 

  42. Nakagomi T, Agbemabiese CA, Nakagomi O (2018) Full genotype constellations of six feline rotavirus A strains isolated in Japan in the 1990s including a rare A15 NSP1 genotype. Arch Virol 163:2257–2260. https://doi.org/10.1007/s00705-018-3835-5

    Article  CAS  PubMed  Google Scholar 

  43. Tsugawa T, Hoshino Y (2008) Whole genome sequence and phylogenetic analyses reveal human rotavirus G3P[3] strains Ro1845 and HCR3A are examples of direct virion transmission of canine/feline rotaviruses to humans. Virology 380:344–353. https://doi.org/10.1016/j.virol.2008.07.041

    Article  CAS  PubMed  Google Scholar 

  44. Tort LF, Victoria M, Lizasoain A, García M, Berois M, Cristina J, Leite JP, Gómez MM, Miagostovich MP, Colina R (2015) Detection of common, emerging and uncommon VP4, and VP7 human group A rotavirus genotypes from urban sewage samples in Uruguay. Food Environ Virol 7:342–353. https://doi.org/10.1007/s12560-015-9213-5

    Article  CAS  PubMed  Google Scholar 

  45. Li K, Lin XD, Huang KY, Zhang B, Shi M, Guo WP, Wang MR, Wang W, Xing JG, Li MH, Hong WS, Holmes EC, Zhang YZ (2016) Identification of novel and diverse rotaviruses in rodents and insectivores, and evidence of cross-species transmission into humans. Virology 494:168–177. https://doi.org/10.1016/j.virol.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  46. Komoto S, Tacharoenmuang R, Guntapong R, Upachai S, Singchai P, Ide T, Fukuda S, Hatazawa R, Sutthiwarakom K, Kongjorn S, Onvimala N, Luechakham T, Sriwanthana B, Murata T, Uppapong B, Taniguchi K (2021) Genomic characterization of a novel G3P[10] rotavirus strain from a diarrheic child in Thailand: evidence for bat-to-human zoonotic transmission. Infect Genet Evol. 87:104667. https://doi.org/10.1016/j.meegid.2020.104667

    Article  CAS  PubMed  Google Scholar 

  47. Mijatovic-Rustempasic S, Roy S, Sturgeon M, Rungsrisuriyachai K, Reisdorf E, Cortese MM, Bowen MD (2015) Full-genome sequence of the first G8P[14] rotavirus strain detected in the United States. Genome Announc 3:e00677-e715. https://doi.org/10.1128/genomea.00677-15

    Article  PubMed  PubMed Central  Google Scholar 

  48. Komoto S, Pongsuwanna Y, Tacharoenmuang R, Guntapong R, Ide T, Higo-Moriguchi K, Tsuji T, Yoshikawa T, Taniguchi K (2016) Whole genomic analysis of bovine group A rotavirus strains A5–10 and A5–13 provides evidence for close evolutionary relationship with human rotaviruses. Vet Microbiol 195:37–57. https://doi.org/10.1016/j.vetmic.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  49. Jere KC, Mlera L, O’Neill HG, Peenze I, van Dijk AA (2012) Whole genome sequence analyses of three African bovine rotaviruses reveal that they emerged through multiple reassortment events between rotaviruses from different mammalian species. Vet Microbiol 159:245–250. https://doi.org/10.1016/j.vetmic.2012.03.040

    Article  CAS  PubMed  Google Scholar 

  50. Ghosh S, Alam MM, Ahmed MU, Talukdar RI, Paul SK, Kobayashi N (2010) Complete genome constellation of a caprine group A rotavirus strain reveals common evolution with ruminant and human rotavirus strains. J Gen Virol 91:2367–2373. https://doi.org/10.1099/vir.0.022244-0

    Article  CAS  PubMed  Google Scholar 

  51. Lachapelle V, Sohal JS, Lambert MC, Brassard J, Fravalo P, Letellier A, L’Homme Y (2014) Genetic diversity of group A rotavirus in swine in Canada. Arch Virol 159:1771–1779. https://doi.org/10.1007/s00705-013-1951-9

    Article  CAS  PubMed  Google Scholar 

  52. Abe M, Ito N, Masatani T, Nakagawa K, Yamaoka S, Kanamaru Y, Suzuki H, Shibano K, Arashi Y, Sugiyama M (2011) Whole genome characterization of new bovine rotavirus G21P[29] and G24P[33] strains provides evidence for interspecies transmission. J Gen Virol 92:952–960. https://doi.org/10.1099/vir.0.028175-0

    Article  CAS  PubMed  Google Scholar 

  53. Sachsenröder J, Braun A, Machnowska P, Ng TFF, Deng X, Guenther S, Bernstein S, Ulrich RG, Delwart E, Johne R (2014) Metagenomic identification of novel enteric viruses in urban wild rats and genome characterization of a group A rotavirus. J Gen Virol 95:2734–2747. https://doi.org/10.1099/vir.0.070029-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. He B, Yang F, Yang W, Zhang Y, Feng Y, Zhou J, Xie J, Feng Y, Bao X, Guo H, Li Y, Xia L, Li N, Matthijnssens J, Zhang H, Tu C (2013) Characterization of a novel G3P[3] rotavirus isolated from a lesser horseshoe bat: a distant relative of feline/canine rotaviruses. J Virol 87:12357–12366. https://doi.org/10.1128/JVI.02013-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Small C, Barro M, Brown TL, Patton JT (2007) Genome heterogeneity of SA11 rotavirus due to reassortment with “O” agent. Virology 359:415–424. https://doi.org/10.1016/j.virol.2006.09.024

    Article  CAS  PubMed  Google Scholar 

  56. Matthijnssens J, Miño S, Papp H, Potgieter C, Novo L, Heylen E, Zeller M, Garaicoechea L, Badaracco A, Lengyel G, Kisfali P, Cullinane A, Collins PJ, Ciarlet M, O’Shea H, Parreño V, Bányai K, Barrandeguy M, Van Ranst M (2012) Complete molecular genome analyses of equine rotavirus A strains from different continents reveal several novel genotypes and a largely conserved genotype constellation. J Gen Virol 93:866–875. https://doi.org/10.1099/vir.0.039255-0

    Article  CAS  PubMed  Google Scholar 

  57. Mijatovic-Rustempasic S, Roy S, Teel EN, Weinberg GA, Payne DC, Parashar UD, Bowen MD (2016) Full genome characterization of the first G3P[24] rotavirus strain detected in humans provides evidence of interspecies reassortment and mutational saturation in the VP7 gene. J Gen Virol 97:389–402. https://doi.org/10.1099/jgv.0.000349

    Article  CAS  PubMed  Google Scholar 

  58. Rojas M, Dias HG, Gonçalves JLS, Manchego A, Rosadio R, Pezo D, Santos N (2019) Genetic diversity and zoonotic potential of rotavirus A strains in the southern Andean highlands, Peru. Transbound Emerg Dis 66:1718–1726. https://doi.org/10.1111/tbed.13207

    Article  PubMed  Google Scholar 

  59. Ma Y, Wen X, Hoshino Y, Yuan L (2015) Cloning and nucleotide sequence analyses of 11 genome segments of two American and one British equine rotavirus strains. Vet Microbiol 176:172–178. https://doi.org/10.1016/j.vetmic.2015.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nemoto M, Nagai M, Tsunemitsu H, Omatsu T, Furuya T, Shirai J, Kondo T, Fujii Y, Todaka R, Katayama K, Mizutani T (2015) Whole-genome sequence analysis of G3 and G14 equine group A rotaviruses isolated in the late 1990s and 2009–2010. Arch Virol 160:1171–1179. https://doi.org/10.1007/s00705-015-2374-6

    Article  CAS  PubMed  Google Scholar 

  61. Dennis FE, Fujii Y, Haga K, Damanka S, Lartey B, Agbemabiese CA, Ohta N, Armah GE, Katayama K (2014) Identification of novel Ghanaian G8P[6] human-bovine reassortant rotavirus strain by next generation sequencing. PLoS ONE 9:e100699. https://doi.org/10.1371/journal.pone.0100699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Khamrin P, Maneekarn N, Peerakome S, Malasao R, Thongprachum A, Chan-It W, Mizuguchi M, Okitsu S, Ushijima H (2009) Molecular characterization of VP4, VP6, VP7, NSP4, and NSP5/6 genes identifies an unusual G3P[10] human rotavirus strain. J Med Virol 81:176–182. https://doi.org/10.1002/jmv.21336

    Article  CAS  PubMed  Google Scholar 

  63. Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, Palombo EA, Iturriza-Gómara M, Maes P, Patton JT, Rahman M, Van Ranst M (2008) Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 82:3204–3219. https://doi.org/10.1128/jvi.02257-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Theamboonlers A, Maiklang O, Thongmee T, Chieochansin T, Vuthitanachot V, Poovorawan Y (2014) Complete genotype constellation of human rotavirus group A circulating in Thailand, 2008–2011. Infect Genet Evol 21:295–302. https://doi.org/10.1016/j.meegid.2013.11.020

    Article  CAS  PubMed  Google Scholar 

  65. Matthijnssens J, De Grazia S, Piessens J, Heylen E, Zeller M, Giammanco GM, Bányai K, Buonavoglia C, Ciarlet M, Martella V, Van Ranst M (2011) Multiple reassortment and interspecies transmission events contribute to the diversity of feline, canine and feline/canine-like human group A rotavirus strains. Infect Genet Evol 11:1396–1406. https://doi.org/10.1016/j.meegid.2011.05.007

    Article  PubMed  Google Scholar 

  66. Tupler T, Levy JK, Sabshin SJ, Tucker SJ, Greiner EC, Leutenegger CM (2012) Enteropathogens identified in dogs entering a Florida animal shelter with normal feces or diarrhea. J Am Vet Med Assoc 241:338–343. https://doi.org/10.2460/javma.241.3.338

    Article  PubMed  Google Scholar 

  67. Ortega AF, Martínez-Castañeda JS, Bautista-Gómez LG, Muñoz RF, Hernández IQ (2017) Identification of co-infection by rotavirus and parvovirus in dogs with gastroenteritis in Mexico. Braz J Microbiol 48:769–773. https://doi.org/10.1016/j.bjm.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mosallanejad B, Shapouri MRS, Avizeh R, Pourmahdi M (2015) Antigenic detection of Canine rotavirus group A in diarrheic dogs in Ahvaz district, Southwestern Iran. Comp Clin Path 24:899–902. https://doi.org/10.1007/s00580-014-2005-8

    Article  CAS  PubMed  Google Scholar 

  69. Humann-Ziehank E, Ganter M (2012) Pre-analytical factors affecting the results of laboratory blood analyses in farm animal veterinary diagnostics. Animal 6:1115–1123. https://doi.org/10.1017/s1751731111002679

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Graduate Program in Science, Coordinator for Disease Control, Ministry of Health-PPG-CCD-SES/SP and Coordination for the Improvement of Higher Education Personnel (CAPES).

Funding

This study was supported by the Sao Paulo Research Foundation (FAPESP) through the Grant numbers #2015/12944-9 and #2020/14786-0 to AL, #2020/02469-0 to YF and #2020/11182-6 to RSM. AL is also supported by Fundo Especial de Saúde para Imunização em Massa e Controle de Doenças (FESIMA) CAF nos. #001/2021 and #060/2021. ACC is supported by a scholarship from Laboratórios de Investigação Médica - Hospital das Clínicas, Faculty of Medicine, University of São Paulo (HCFMUSP) with funds donated by NUBANK under the #HCCOMVIDA scheme.

Author information

Authors and Affiliations

Authors

Contributions

AL conceived and designed the study protocol; LSA, FFC, MBAG, EL, YF, RSM, RG, SGM, DP, RDL, MSG, and ACC participated in the conduct of the study; LSA, FFC, MBAG, DP, and RDL acquired the data; LSA and RG performed the ELISA tests; LSA, FFC, and RG conducted PAGE screening; EL, YF, and RSM performed the RT-PCR tests; SGM, MSGG, ACC, and AL conducted sequencing assays; ACC and AL performed the phylogenetic analysis; AL analyzed, interpreted the data and drafted the manuscript; LSA, FFC, MBAG, EL, YF, RSM, RG, SGM, DP, RDL, MSSG, and ACC critically revised the manuscript for intellectual content. All authors read and approved the final version. AL is the guarantor of the paper.

Corresponding author

Correspondence to Adriana Luchs.

Ethics declarations

Conflict of interest

None declared.

Additional information

Handling Editor: Pablo Pineyro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

705_2023_5807_MOESM1_ESM.pdf

Supplement 1. Map of São Paulo state, Southwestern region, Brazil, highlighting municipalities (in red) from which samples were collected from domestic cats and dogs attended at small animal clinics between 2012 and 2021. Down: Map of Brazil showing São Paulo state. Up: Localities surveyed, including municipalities of São Paulo, Guarulhos, Barueri, Jundiaí, Mogi das Cruzes and Osasco. The map was generated with QGIS software v2.14.9 (https://www.qgis.org/pt_BR/site/about/index.html) (PDF 216 KB)

Supplementary file2 (DOC 47 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azevedo, L.S., Costa, F.F., Ghani, M.B.A. et al. Full genotype characterization of Brazilian canine G3P[3] strains during a 10-year survey (2012–2021) of rotavirus infection in domestic dogs and cats. Arch Virol 168, 176 (2023). https://doi.org/10.1007/s00705-023-05807-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05807-5

Navigation