Skip to main content
Log in

Complete genome sequence of a novel lytic phage of Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Bacteriophage L522, which infects Xanthomonas oryzae pv. oryzae, was isolated from a paddy leaf sample collected in Long An province, Vietnam. The phage shows myovirus morphology based on transmission electron microscopy. It displays a latent period and burst size of approximately 3 h and 63 new virions per infected cell (PFU/infected cell), respectively. The genome of L522 is 44,497 bp in length, with 52% GC content. Of the 63 genes identified, functions were predicted for 26. No virulence or antibiotic-resistance genes were detected. The results of a BLASTn search showed similarity to a previously reported Xanthomonas phage, with 85% average nucleotide sequence identity and 87.15% query coverage. Thus, this L522 is a representative of a new species in the genus Xipdecavirus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. IRRI A (2010) C. Global Rice Science Partnership (GRiSP) Proposal. CGIAR. https://hdl.handle.net/10947/3681. Accessed 28 December 2022

  2. Office GS (2021) Statistical Yearbook of Vietnam. Statistical Publishing House, Vietnam

    Google Scholar 

  3. Verdier V, Vera Cruz C, Leach JE (2012) Controlling rice bacterial blight in Africa: Needs and prospects. J Biotechnol 159(4):320–328. https://doi.org/10.1016/j.jbiotec.2011.09.020

    Article  CAS  PubMed  Google Scholar 

  4. Haque Z, Khan MR (2022) Optimization of different application methods of multi-facial bacterial and fungal antagonists against sheath blight pathogen of rice, Rhizoctonia solani AG1‐IA. J Phytopathol 171(1):23–35. https://doi.org/10.1111/jph.13151

    Article  CAS  Google Scholar 

  5. Lu J, Wang C, Zeng D, Li J, Shi X, Shi Y, Zhou Y (2021) Genome-Wide Association Study Dissects Resistance Loci against Bacterial Blight in a Diverse Rice Panel from the 3000 Rice Genomes Project. Rice 14(1):22. https://doi.org/10.1186/s12284-021-00462-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim K-H, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  7. Organization WWH (2019) The WHO Recommended Classification of Pesticides by Hazard and guidelines to classification. WHO. https://www.who.int/publications/i/item/9789240005662 Accessed 28 December 2022

  8. Cui N, Zhang X, Xie Q, Wang S, Chen J, Huang L, Cai X (2011) Toxicity profile of labile preservative bronopol in water: The role of more persistent and toxic transformation products. Environ Pollut 159(2):609–615. https://doi.org/10.1016/j.envpol.2010.09.036

    Article  CAS  PubMed  Google Scholar 

  9. Shen Guang-bin ZM-g (2001) Action Mode of Bismerthiazol against Rice Leaf Blight. Chin J Pesticide Sci 3(3):35

    Google Scholar 

  10. Zhu X-F, Xu Y, Peng D, Zhang Y, Huang T-T, Wang J-X, Zhou M-G (2013) Detection and characterization of bismerthiazol-resistance of Xanthomonas oryzae pv. oryzae. Crop Prot 47:24–29. https://doi.org/10.1016/j.cropro.2012.12.026

    Article  CAS  Google Scholar 

  11. Šević M, Gašić K, Ignjatov M, Mijatović M, Prokić A, Obradović A (2019) Integration of biological and conventional treatments in control of pepper bacterial spot. Crop Prot 119:46–51. https://doi.org/10.1016/j.cropro.2019.01.006

    Article  CAS  Google Scholar 

  12. Nakayinga R, Makumi A, Tumuhaise V, Tinzaara W (2021) Xanthomonas bacteriophages: a review of their biology and biocontrol applications in agriculture. BMC Microbiol 21(1):291. https://doi.org/10.1186/s12866-021-02351-7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Holtappels D, Fortuna KJ, Moons L, Broeckaert N, Bäcker LE, Venneman S, Wagemans J (2022) The potential of bacteriophages to control Xanthomonas campestris pv. campestris at different stages of disease development. Microb Biotechnol 15(6):1762–1782. https://doi.org/10.1111/1751-7915.14004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoang HA, Yen MH, Ngoan VT, Nga LP, Oanh DTH (2018) Virulent bacteriophage of Edwardsiella ictaluri isolated from kidney and liver of striped catfish Pangasianodon hypophthalmus in Vietnam. Dis Aquat Organ 132(1):49–56

    Article  CAS  PubMed  Google Scholar 

  15. Kutter E (2009) Phage Host Range and Efficiency of Plating. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions. Humana Press, Totowa, NJ, pp 141–149

    Google Scholar 

  16. Hoang A, Tran H, Le TTX P, N. G. A., Dang TH, O (2019) Selection of Phages to Control Aeromonas hydrophila – An Infectious Agent in Striped Catfish. Biocontrol Sci 24(1):23–28. https://doi.org/10.4265/bio.24.23

    Article  CAS  Google Scholar 

  17. Tu VQ, Nguyen T-T, Tran XTT, Millard AD, Phan HT, Le NP, Hoang HA (2020) Complete genome sequence of a novel lytic phage infecting Aeromonas hydrophila, an infectious agent in striped catfish (Pangasianodon hypophthalmus). Arch Virol 165(12):2973–2977. https://doi.org/10.1007/s00705-020-04793-2

    Article  CAS  PubMed  Google Scholar 

  18. Simon A (2010) FastQC: A Quality Control Tool for High Throughput Sequence Data. Babraham Institute. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 29 December 2022

  19. Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Xia F (2015) RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5(1):8365. https://doi.org/10.1038/srep08365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10(1):421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43(D1):D222–D226. https://doi.org/10.1093/nar/gku1221

    Article  CAS  PubMed  Google Scholar 

  23. Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol Biol Evol 32(1):268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  25. Pandurangan R, Yaram G, Samuel, Gnanamanickam S (2018) Bacteriophages: A New Weapon for the Control of Bacterial Blight Disease in Rice Caused by Xanthomonas oryzae. Microbiol Biotechnol Lett 46(4):346–359. https://doi.org/10.4014/mbl.1807.07009

    Article  CAS  Google Scholar 

  26. Dong Z, Xing S, Liu J, Tang X, Ruan L, Sun M, Peng D (2018) Isolation and characterization of a novel phage Xoo-sp2 that infects Xanthomonas oryzae pv. oryzae. 99(10):1453–1462. https://doi.org/10.1099/jgv.0.001133

  27. Turner D, Adriaenssens EM, Tolstoy I, Kropinski AM (2021) Phage Annotation Guide: Guidelines for Assembly and High-Quality Annotation. PHAGE 2(4):170–182. https://doi.org/10.1089/phage.2021.0013

    Article  PubMed  PubMed Central  Google Scholar 

  28. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, McArthur AG (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48(D1):D517–D525. https://doi.org/10.1093/nar/gkz935

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Department of Science and Technology of HCMC, Vietnam, under contract number 110/2020/HĐ-QPTKHCN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang A. Hoang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Johannes Wittmann

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

My, P.D., Vinh, T.Q., Ngoc, T.H. et al. Complete genome sequence of a novel lytic phage of Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Arch Virol 168, 157 (2023). https://doi.org/10.1007/s00705-023-05788-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05788-5

Navigation