Skip to main content
Log in

Genome characterization of a Turkish bovine rotavirus field isolate by shotgun metagenomics

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A bovine rotavirus (BRV) isolate from Kirsehir was isolated from feces of a neonatal calf with diarrhea, identified, and sequenced by shotgun sequencing. Its genotype constellation is G10-P[5]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The structural genes and the non-structural genes NSP1, NSP3, and NSP4 of the Kirsehir isolate were similar in sequence to those of BRVs identified in Turkey. However, VP2, NSP2, NSP4, and NSP5/6 showed similarity to those of rotaviruses from different animal hosts. These findings not only expand our current understanding of the diversity of rotaviruses but also contribute to our understanding of the evolution of rotaviruses at both the national and global levels and reinforce the significance of conducting further research on rotaviruses in Turkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Azkur AK, Aksoy E (2018) Prevention of Calf Diseases. Lalahan Hay Araşt Enst Derg 58:56–63

    Google Scholar 

  2. Lorenz I, Fagan J, More SJ (2011) Calf health from birth to weaning. II. Management of diarrhoea in pre-weaned calves. Ir Vet J 64:9. https://doi.org/10.1186/2046-0481-64-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bányai K, Estes MK, Martella V, Parashar UD (2018) Viral gastroenteritis. The Lancet 392:175–186. https://doi.org/10.1016/S0140-6736(18)31128-0

    Article  Google Scholar 

  4. Geletu US, Usmael MA, Bari FD (2021) Rotavirus in Calves and Its Zoonotic Importance. Vet Med Int 2021:6639701. https://doi.org/10.1155/2021/6639701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. ICTV (2021) Virus Taxonomy: 2021 Release. https://ictv.global/taxonomy. Accessed 14 Feb 2023

  6. Matthijnssens J, Ciarlet M, Heiman E et al (2008) Full Genome-Based Classification of Rotaviruses Reveals a Common Origin between Human Wa-Like and Porcine Rotavirus Strains and Human DS-1-Like and Bovine Rotavirus Strains. J Virol 82:3204–3219. https://doi.org/10.1128/jvi.02257-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matthijnssens J, Ciarlet M, McDonald SM et al (2011) Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 156:1397–1413. https://doi.org/10.1007/s00705-011-1006-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fritzen JTT, Oliveira M, Lorenzetti E et al (2020) Genotype constellation of a rotavirus A field strain with an uncommon G8P[11] genotype combination in a rotavirus-vaccinated dairy cattle herd. Arch Virol 165:1855–1861. https://doi.org/10.1007/s00705-020-04675-7

    Article  CAS  PubMed  Google Scholar 

  9. Gutierrez MB, de Assis RMS, Arantes I, Fumian TM (2022) Full genotype constellations analysis of unusual DS-1-like G12P[6] and G6P[8] rotavirus strains detected in Brazil, 2019. Virology 577:74–83. https://doi.org/10.1016/j.virol.2022.10.010

    Article  CAS  PubMed  Google Scholar 

  10. da Silva Medeiros TN, Lorenzetti E, Alfieri AF, Alfieri AA (2015) Phylogenetic analysis of a G6P[5] bovine rotavirus strain isolated in a neonatal diarrhea outbreak in a beef cattle herd vaccinated with G6P[1] and G10P[11] genotypes. Arch Virol 160:447–451. https://doi.org/10.1007/s00705-014-2271-4

    Article  CAS  PubMed  Google Scholar 

  11. Boene SS, João ED, Strydom A et al (2021) Prevalence and genome characterization of porcine rotavirus A in southern Mozambique. Infect Genet Evol 87:104637. https://doi.org/10.1016/j.meegid.2020.104637

    Article  CAS  PubMed  Google Scholar 

  12. Moutelíková R, Sauer P, Prodělalová J (2020) Whole-genome sequence of a reassortant G9P[4] rotavirus A strain from two children in the Czech Republic. Arch Virol 165:1703–1706. https://doi.org/10.1007/s00705-020-04648-w

    Article  CAS  PubMed  Google Scholar 

  13. Rotavirus Classification Working Group: RCWG - Laboratory of Viral Metagenomics. https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg. Accessed 30 Mar 2023

  14. Karayel I, Fehér E, Marton S et al (2017) Putative vaccine breakthrough event associated with heterotypic rotavirus infection in newborn calves, Turkey, 2015. Vet Microbiol 201:7–13. https://doi.org/10.1016/j.vetmic.2016.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alkan F, Ozkul A, Oguzoglu TC et al (2010) Distribution of G (VP7) and P (VP4) genotypes of group A bovine rotaviruses from Turkish calves with diarrhea, 1997–2008. Vet Microbiol 141:231–237. https://doi.org/10.1016/j.vetmic.2009.09.016

    Article  CAS  PubMed  Google Scholar 

  16. Karayel-Hacioglu I, Timurkan MO, Pellegrini F et al (2022) Whole-genome analysis of a rare G15P[21] group A rotavirus detected at a dairy cattle farm. J Gen Virol 103:001808. https://doi.org/10.1099/jgv.0.001808

    Article  CAS  Google Scholar 

  17. Aksoy E, Kara E, Yagci BB, Azkur AK (2021) Investigation of Bovine Coronavirus and Bovine Rotavirus in Calves with Neonatal Diarrhea in Kırıkkale and Surrounding Provinces. MAKU J Health Sci Inst 9:38–46. https://doi.org/10.24998/maeusabed.1010683

    Article  Google Scholar 

  18. Wyatt RG, James WD, Bohl EH et al (1980) Human Rotavirus Type 2: Cultivation in vitro. Sci (1979) 207:189–191. https://doi.org/10.1126/science.6243190

    Article  CAS  Google Scholar 

  19. Arnold M, Patton JT, McDonald SM (2009) Culturing, storage, and quantification of rotaviruses. In: Current Protocols in Microbiology

  20. Babiuk LA, Mohammed K, Spence L et al (1977) Rotavirus Isolation and Cultivation in the Presence of Trypsin. J Clin Microbiol 610–617. https://doi.org/10.1128/jcm.6.6.610-617.1977

  21. Iturriza-Gomara M, Green J, Brown DWG et al (1999) Comparison of specific and random priming in the reverse transcriptase polymerase chain reaction for genotyping group A rotaviruses. J Virol Methods 78:93–103. https://doi.org/10.1016/S0166-0934(98)00168-2

    Article  CAS  PubMed  Google Scholar 

  22. Zhu W, Dong J, Haga T et al (2011) Rapid and Sensitive Detection of Bovine Coronavirus and Group A Bovine Rotavirus from Fecal Samples by Using One-Step Duplex RT-PCR Assay. J Vet Med Sci 73:531–534. https://doi.org/10.1292/jvms.10-0401

    Article  CAS  PubMed  Google Scholar 

  23. Iturriza Gómara M, Wong C, Blome S et al (2002) Molecular Characterization of VP6 Genes of Human Rotavirus Isolates: Correlation of Genogroups with Subgroups and Evidence of Independent Segregation. J Virol 76:6596–6601. https://doi.org/10.1128/jvi.76.13.6596-6601.2002

    Article  PubMed  PubMed Central  Google Scholar 

  24. Berber E, Çanakoğlu N, Sözdutmaz İ et al (2021) Seasonal and age-associated pathogen distribution in newborn calves with diarrhea admitted to icu. Vet Sci 8:128. https://doi.org/10.3390/vetsci8070128

    Article  PubMed  PubMed Central  Google Scholar 

  25. SIAS (2023) SIAS. In: http://imed.med.ucm.es/Tools/sias.html. Accessed 14 Feb 2023

  26. Koçak AA, Aydın M, Matsumoto T et al (2019) Emergence of rotavirus G9 in 2012, as the dominant genotype in Turkish children with diarrhea, in a university hospital in Ankara. Rev Rom Med Lab 27:209–218. https://doi.org/10.2478/rrlm-2019-0021

    Article  Google Scholar 

  27. Selvarajan S, Reju S, Gopalakrishnan K et al (2022) Evolutionary analysis of rotavirus G1P[8] strains from Chennai, South India. J Med Virol 94:2870–2876. https://doi.org/10.1002/jmv.27462

    Article  CAS  PubMed  Google Scholar 

  28. Abayli H, Tonbak S, Azkur AK, Bulut H (2017) Complete genome analysis of highly pathogenic bovine ephemeral fever virus isolated in Turkey in 2012. Arch Virol 162:3233–3238. https://doi.org/10.1007/s00705-017-3470-6

    Article  CAS  PubMed  Google Scholar 

  29. Yandle Z, Gonzalez G, Carr M et al (2023) A viral metagenomic protocol for nanopore sequencing of group A rotavirus. J Virol Methods 312:114664. https://doi.org/10.1016/j.jviromet.2022.114664

    Article  CAS  PubMed  Google Scholar 

  30. Ghosh S, Taniguchi K, Aida S et al (2013) Whole genomic analyses of equine group A rotaviruses from Japan: Evidence for bovine-to-equine interspecies transmission and reassortment events. Vet Microbiol 166:474–485. https://doi.org/10.1016/j.vetmic.2013.07.016

    Article  CAS  PubMed  Google Scholar 

  31. Schoondermark-van de Ven E, van Ranst M, de Bruin W et al (2013) Rabbit colony infected with a bovine-like G6P[11] rotavirus strain. Vet Microbiol 166:154–164. https://doi.org/10.1016/j.vetmic.2013.05.028

    Article  CAS  PubMed  Google Scholar 

  32. Lestari FB, Chandranoi K, Chuchaona W et al (2023) A G3P[9] rotavirus strain with an unusual genome constellation in a diarrheic cat in Thailand. Arch Virol 168:24. https://doi.org/10.1007/s00705-022-05641-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsugawa T, Hoshino Y (2008) Whole genome sequence and phylogenetic analyses reveal human rotavirus G3P[3] strains Ro1845 and HCR3A are examples of direct virion transmission of canine/feline rotaviruses to humans. Virology 380:344–353. https://doi.org/10.1016/j.virol.2008.07.041

    Article  CAS  PubMed  Google Scholar 

  34. Fukuda Y, Araki K, Hara M et al (2023) Sequence analysis of a feline- and porcine-origin G3P[9] rotavirus A strain in a child with acute gastroenteritis in Japan. Arch Virol 168:45. https://doi.org/10.1007/s00705-022-05685-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Scientific Research Projects Coordination Unit of Kırıkkale University (project number 2021/111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Kürşat Azkur.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Tim Skern.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

705_2023_5778_MOESM1_ESM.xlsx

Supplementary Material 1: Amino acid sequences and amino acid substitutions in all 11 viral genomic segments of the Kirsehir isolate when compared to other selected RVA strains. The amino acid substitutions were identified using MEGA software, by selecting the “highlight variable sites” option, and the data were downloaded in Excel format and then merged into one file.

Supplementary Material 2: Supplementary Table S1-S3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksoy, E., Azkur, A.K. Genome characterization of a Turkish bovine rotavirus field isolate by shotgun metagenomics. Arch Virol 168, 159 (2023). https://doi.org/10.1007/s00705-023-05778-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05778-7

Keywords

Navigation