Skip to main content

Advertisement

Log in

Synthetic dibenzylideneketones as promising anti-herpes simplex virus type 1 agents

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

New antiviral agents for the treatment of herpes simplex virus type 1 (HSV-1) infection, which causes a highly prevalent and incurable disease, are needed. Here, we report for the first time the in vitro anti-HSV-1 activity of two dibenzylideneketone compounds: DBK1 and DBK2. DBK1 demonstrated virucidal activity, and high-resolution scanning electron microscopy showed that it caused morphological changes in the HSV-1 envelope. DBK2 was able to reduce HSV-1 plaque size in vitro. The DBKs are promising anti-HSV-1 candidates, as they exhibit low toxicity and exert an antiviral effect by acting at the early stages of HSV-1-host cell interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Herpes simplex virus. World Health Organization, https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus#:~:text=Overview,transmitted%20and%20causes%20genital%20herpes. Accessed 02 January 2023.

  2. Whitley RJ, Roizman B (2001) Herpes simplex virus infections. Lancet 357(9267):1513–1518. https://doi.org/10.1016/S0140-6736(00)04638-9

    Article  CAS  PubMed  Google Scholar 

  3. Shuyong Z, Viejo-Borbolla A (2021) Pathogenesis and virulence of herpes simplex virus. Virulence 12(1):2670–2702. https://doi.org/10.1080/21505594.2021.1982373

    Article  CAS  Google Scholar 

  4. Watanabe M, Arii J, Takeshima K, Fukui A, Shimojima M, Kozuka-Hata H et al (2021) Prohibitin-1 contributes to cell-to-cell transmission of herpes simplex virus 1 via the MAPK/ERK signaling pathway. J Virol 95(3):e01413-e1420. https://doi.org/10.1128/JVI.01413-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sattentau Q (2008) Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 6(11):815–826. https://doi.org/10.1038/nrmicro1972

    Article  CAS  PubMed  Google Scholar 

  6. Jiang YC, Feng H, Lin YC, Guo XR (2016) New strategies against drug resistance to herpes simplex virus. Int J Oral Sci 8(1):1–6. https://doi.org/10.1038/ijos.2016.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kłysik K, Pietraszek A, Karewicz A, Nowakowska M (2020) Acyclovir in the treatment of herpes viruses—a review. Curr Med Chem 27:4118–4137. https://doi.org/10.2174/0929867325666180309105519

    Article  CAS  PubMed  Google Scholar 

  8. Whitley R, Baines J (2018) Clinical management of herpes simplex virus infections: past, present, and future [version 1; referees: 2 approved]. F1000Research 7:1726. https://doi.org/10.12688/f1000research.16157.1

    Article  CAS  Google Scholar 

  9. Din ZU, Fill TP, Assis FF, Lazarin-Bidóia D, Kaplum V, Garcia FP et al (2014) Unsymmetrical 1,5-diaryl-3-oxo-1,4-pentadienyls and their evaluation as antiparasitic agents. Bioorg Med Chem 22:1121–1127. https://doi.org/10.1016/j.bmc.2013.12.020

    Article  CAS  Google Scholar 

  10. Din ZU, Trapp MA, Soman de Medeiros L, Lazarin-Bidóia D, Garcia FP, Peron F et al (2018) Symmetrical and unsymmetrical substituted 2,5-diarylidene cyclohexanones as anti-parasitic compounds. Eur J Med Chem 155:596–608. https://doi.org/10.1016/j.ejmech.2018.06.031

    Article  CAS  PubMed  Google Scholar 

  11. Din ZU, Rodrigues-Filho E (2019) Optimized one-pot synthesis of monoarylidene andunsymmetrical diarylidene cycloalkanones. Arab J Chem 12:4756–4763

    Article  Google Scholar 

  12. Din ZU, Lazarin-Bidóia D, Kaplum V, Garcia FP, Nakamura CV, Rodrigues-Filho E (2019) The structure design of biotransformed unsymmetrical nitro-contained 1,5-diaryl-3-oxo-1, 4-pentadienyls for the anti-parasitic activities. Arab J Chem 12(8):4006–4016. https://doi.org/10.1016/j.arabjc.2016.03.005

    Article  CAS  Google Scholar 

  13. de Paula JC, Bakoshi ABK, Lazarin-Bidóia D, Ud Din Z, Rodrigues-Filho E, Ueda-Nakamura T et al (2020) Antiproliferative activity of the dibenzylideneacetone derivate (E)-3-ethyl-4-(4-nitrophenyl)but-3-en-2-one in Trypanosoma cruzi. Acta Trop 211:105653. https://doi.org/10.1016/j.actatropica.2020.105653

    Article  CAS  PubMed  Google Scholar 

  14. Din ZU, Santos A, Trapp MA, Lazarin-Bidóia D, Garcia FP, Peron F et al (2016) Curcumin inspired synthesis of unsymmetrical diarylpentanoids with highly potent anti-parasitic activities: in silico studies and DFT-based stereochemical calculation. Med. Chem. Commun 7:820–831. https://doi.org/10.1039/c5md00599j

    Article  CAS  Google Scholar 

  15. Peron F, Lazarin-Bidóia D, Din ZU, Rodrigues-Filho E, Ueda-Nakamura T, Silva SO et al (2017) Effects of (1E,4E)-2-methyl-1,5-bis(4-nitrophenyl)penta-1,4-dien-3-one on Trypanosoma cruzi and its combinational effect with benznidazole, ketoconazole, or fluconazole. Biomed Res Int 2017:7254193. https://doi.org/10.1155/2017/7254193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lazarin-Bidóia D, Desoti VC, Martins SC, Ribeiro FM, Din ZU, Rodrigues-Filho E et al (2016) Dibenzylideneacetones are potent Trypanocidal compounds that affect the Trypanosoma cruzi redox system. Antimicrob Agents Chemother 60:890–903. https://doi.org/10.1128/AAC.01360-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garcia FP, Rodrigues JHS, Din ZU, Rodrigues-Filho E, Ueda-Nakamura T, Auzély-Velty R et al (2017) A3K2A3-induced apoptotic cell death of Leishmania amazonensis occurs through caspase- and ATP-dependent mitochondrial dysfunction. Apoptosis 22:57–71. https://doi.org/10.1007/s10495-016-1308-4

    Article  CAS  PubMed  Google Scholar 

  18. Cos P, Vlietinck AJ, Berghe DV, Maes L (2006) Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept.’ J Ethnopharmacol 106:290–302. https://doi.org/10.1016/j.jep.2006.04.003

    Article  CAS  PubMed  Google Scholar 

  19. Benassi-Zanqueta É, Marques CF, Nocchi SR, Dias Filho BP, Nakamura CV, Ueda-Nakamura T (2018) Parthenolide influences herpes simplex virus 1 replication in vitro. Intervirology 61(1):14–22. https://doi.org/10.1159/000490055

    Article  CAS  PubMed  Google Scholar 

  20. Li M-K, Liu Y-Y, Wei F, Shen M-X, Zhong Y, Li S et al (2018) Antiviral activity of arbidol hydrochloride against herpes simplex virus I in vitro and in vivo. Int J Antimicrob Agents 51:98–106. https://doi.org/10.1016/j.ijantimicag.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  21. Tonder AV, Joubert AM, Cromarty AD (2015) Limitations of the 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes 8(47):1–10. https://doi.org/10.1186/s13104-015-1000-8

    Article  CAS  Google Scholar 

  22. Chandru H, Sharada AC, Bettadaiah BK, Ananda Kumar CS, Rangappa KS, Sunila Jayashree K (2007) In vivo growth inhibitory and anti-angiogenic effects of synthetic novel dienone cyclopropoxy curcumin analogs on mouse Ehrlich ascites tumor. Bioorg Med Chem 15:7696–7703. https://doi.org/10.1016/j.bmc.2007.08.051

    Article  CAS  PubMed  Google Scholar 

  23. Bello ML, Chiaradia LD, Dias LRS, Pacheco LK, Stumpf TR, Mascarello A et al (2011) Trimethoxy-chalcone derivatives inhibit growth of Leishmania Braziliensis: synthesis, biological evaluation, molecular modeling and structure–activity relationship (SAR). Bioorg Med Chem 19:5046–5052. https://doi.org/10.1016/j.bmc.2011.06.023

    Article  CAS  PubMed  Google Scholar 

  24. Roizman B, Knipe DM (2001) Herpes simplex viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RS, Martin MA, Roizman B, Straus SE (eds) Fields virology, 4th edn. Lippincott-Raven, Philadelphia, pp 2399–2461

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Financiadora de Estudos e Projetos (FINEP) for financial support, and to Complexo de Centrais de Apoio à Pesquisa (COMCAP/UEM) for research facilities. The authors thank Dr. Érica Benassi Zanqueta for assistance in the development of this work.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Financiadora de Estudos e Projetos (FINEP).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the research and/or preparation of the article: TU-N was responsible for conception and design of the study, TZO performed the experiments of cytotoxicity and antiviral activity and wrote the manuscript, DPF and TRdS performed the antiviral assays, AHdS and DL-B performed the experiments of scanning electron microscopy, ZUD and ER-F were responsible for the preparation and chemical characterization of the dibenzylideneketones compounds, BPDF and CVN contributed by advising on experiments and through critical reading and feedback of the manuscript. All authors have read and approved the final article.

Corresponding author

Correspondence to Tania Ueda-Nakamura.

Ethics declarations

Conflict of interest

All of the authors declare that there is no conflict of interest.

Additional information

Handling Editor: Graciela Andrei.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, T.Z., Fonseca, D.P., dos Santos, A.H. et al. Synthetic dibenzylideneketones as promising anti-herpes simplex virus type 1 agents. Arch Virol 168, 153 (2023). https://doi.org/10.1007/s00705-023-05777-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05777-8

Navigation