Skip to main content
Log in

Characterization and complete genome sequence analysis of the novel phage RPZH3 infecting Ralstonia solanacearum

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A novel lytic Ralstonia phage, RPZH3, was isolated from the soil of a tobacco field via a double agar overlay plaque assay. The phage has an icosahedral head 75 ± 5 nm in diameter with a short tail about 15 ± 5 nm in length. It was able to infect 18 out of 30 tested strains of R. solanacearum isolated from tobacco, sweet potato, tomato, pepper, and eggplant. The latent period of the phage was 80 min, and the burst period was 60 min with a burst size of about 27 pfu/cell. The phage was stable at pH 4–12 at 28°C, and it was also stable at temperatures from 45°C to 60°C at pH 7.0. The complete genome of phage RPZH3 consists of 65,958 bp, with a GC content of 64.93%. The genome contains 93 open reading frames (ORFs) and encodes a tRNA for cysteine. Nucleotide sequence alignment and phylogenetic analysis indicated that RPZH3 is a new member of the genus Gervaisevirus belonging to the class Caudoviricetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Addy HS, Farid MM, Ahmad AA, Huang Q (2018) Host range and molecular characterization of a lytic Pradovirus-like Ralstonia phage RsoP1IDN isolated from Indonesia. Arch Virol 163:3409–3414

    Article  CAS  PubMed  Google Scholar 

  2. Ahmad AA, Stulberg MJ, Mershon JP, Mollov DS, Huang Q (2017) Molecular and biological characterization of varphiRs551, a filamentous bacteriophage isolated from a race 3 biovar 2 strain of Ralstonia solanacearum. PLoS ONE 12:e0185034

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alexander Sulakvelidze Z, Alavidze JGlenn, Morris J (2001) Bacteriophage Therapy. Antimicrob Agents Chemother 45:659–659

    Google Scholar 

  4. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Askora A, Kawasaki T, Fujie M, Yamada T (2017) Lysogenic Conversion of the Phytopathogen Ralstonia solanacearum by the P2virus varphiRSY1. Front Microbiol 8:2212

    Article  PubMed  PubMed Central  Google Scholar 

  6. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhunchoth A, Blanc-Mathieu R, Mihara T, Nishimura Y, Askora A, Phironrit N, Leksomboon C, Chatchawankanphanich O, Kawasaki T, Nakano M, Fujie M, Ogata H, Yamada T (2016) Two asian jumbo phages, ϕRSL2 and ϕRSF1, infect Ralstonia solanacearum and show common features of ϕKZ-related phages. Virology 494:56–66

    Article  CAS  PubMed  Google Scholar 

  8. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garneau JR, Depardieu F, Fortier LC, Bikard D (2017) PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. 7:8292

  10. Gill JJ, Summer EJ, Russell WK, Cologna SM, Carlile TM, Fuller AC, Kitsopoulos K, Mebane LM, Parkinson BN, Sullivan D, Carmody LA, Gonzalez CF, LiPuma JJ, Young R (2011) Genomes and Characterization of Phages Bcep22 and BcepIL02, Founders of a Novel Phage Type in Burkholderia cenocepacia. J Bacteriol 193:5300–5313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res 41:e129–e129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87

    Article  CAS  PubMed  Google Scholar 

  13. Jones JB, Jackson LE, Obradovic BBaloghA, Iriarte. FB, M.T.Momol (2007) Bacteriophages for Plant Disease Control. Annu Rev Phytopathol 45:245–262

    Article  CAS  PubMed  Google Scholar 

  14. Jiang G, Wei Z, Xu J, Chen H, Zhang Y, She X, Macho AP, Ding W, Liao B (2017) Bacterial Wilt in China: History, Current Status, and Future Perspectives. Front Plant Sci 8:1549

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP (2009) Enumeration of bacteriophages by double agar overlay plaque assay. Methods in molecular biology. (Clifton NJ) 501:69–76

    CAS  Google Scholar 

  16. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki CJ, Marchler-Bauer A (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–d268

    Article  CAS  PubMed  Google Scholar 

  18. Lu Z, Breidt F, Fleming HP, Altermann E, Klaenhammer TR (2003) Isolation and characterization of a Lactobacillus plantarum bacteriophage, ΦJL-1, from a cucumber fermentation. Int J Food Microbiol 84:225–235

    Article  CAS  PubMed  Google Scholar 

  19. Lynch KH, Stothard P, Dennis JJ (2012) Characterization of DC1, a Broad-Host-Range Bcep22-Like Podovirus. Appl Environ Microbiol 78:889–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moraru C, Varsani A, Kropinski AM (2020) VIRIDIC—A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses. Viruses 12:1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  22. Sambrock J, Russel DW (2001) Molecular Cloning: A Laboratory Manual(3rd edition). Cold Spring Harbor Laboratory Press, Cold SpringHarbor, New York, USA

    Google Scholar 

  23. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Truong Thi B, Pham Khanh NH, Namikawa R, Miki K, Kondo A, Dang Thi PT, Kamei K (2016) Genomic characterization of Ralstonia solanacearum phage varphiRS138 of the family Siphoviridae. Arch Virol 161:483–486

    Article  PubMed  Google Scholar 

  25. Verma V, Harjai K, Chhibber S (2009) Characterization of a T7-Like Lytic Bacteriophage of Klebsiella pneumoniae B5055: A Potential Therapeutic Agent. Curr Microbiol 59:274–281

    Article  CAS  PubMed  Google Scholar 

  26. Wang R, Cong Y, Mi Z, Fan H, Shi T, Liu H, Tong Y (2019) Characterization and complete genome sequence analysis of phage GP4, a novel lytic Bcep22-like podovirus. Arch Virol 164:2339–2343

    Article  CAS  PubMed  Google Scholar 

  27. Wicker E, Grassart L, Coranson-Beaudu R, Mian D, Guilbaud C, Fegan M, Prior P (2007) Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Appl Environ Microbiol 73:6790–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 20:348–355

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Key Research and Development Program of China (2017YFD0201106-02), the Guiding Projects in Fujian Province (2022N0004), and Fujian Provincial Company of China Tobacco (2022350000240061, 201735000027130). We thank Dr. Peter Buchanan, Landcare Research, New Zealand, for his review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqing Cai.

Ethics declarations

Nucleotide sequence accession number

The complete genome sequence of phage RPZH3 was deposited in the GenBank database under the accession number MZ870514.

Additional information

Communicated by Johannes Wittmann

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Supplementary Material 1

Supplementary Table S1

Supplementary Table S1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Gu, G., Chen, C. et al. Characterization and complete genome sequence analysis of the novel phage RPZH3 infecting Ralstonia solanacearum. Arch Virol 168, 105 (2023). https://doi.org/10.1007/s00705-023-05737-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05737-2

Navigation