Skip to main content
Log in

Molecular identification and phylogenetic characterization of A-strain isolates of maize streak virus from western Ethiopia

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The A-strain of maize streak virus (MSV) causes maize streak disease (MSD), which is a major biotic threat to maize production in sub-Saharan Africa. Previous studies have described different MSV strains of economic importance from southern and eastern African countries and how eastern African regions are hubs for MSV diversification. Despite these efforts, due to a lack of extensive sampling, there is limited knowledge about the MSV-A diversity in Ethiopia. Here, field sampling of maize plants and wild grasses with visible MSD symptoms was carried out in the western Ethiopian regions of Gambela, Oromia, and Benishangul-Gumuz during the maize-growing season of 2019. The complete genomes of MSV isolates (n = 60) were cloned and sequenced by the Sanger method. We used a model-based phylogenetic approach to analyse 725 full MSV genome sequences available in the GenBank database together with newly determined genome sequences from Ethiopia to determine their subtypes and identify recombinant lineages. Of the 127 fields accessed, MSD prevalence was highest, at 96%, in the Gambela region and lowest in Oromia, at 66%. The highest mean symptom severity of 4/5 (where 5 is the highest and 1 the lowest) was observed in Gambela and Benishangul-Gumuz. Our results show that these newly determined MSV isolates belong to recombinant lineage V of the A1 subtype, with the widest dissemination and greatest economic significance in sub-Saharan Africa and the adjacent Indian Ocean islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Charles K (2014) Maize streak virus: a review of pathogen occurrence, biology and management options for smallholder farmers. African J Agric Res 9:2736–2742. https://doi.org/10.5897/AJAR2014.8897

    Article  Google Scholar 

  2. Shepherd DN, Martin DP, Van Der Walt E et al (2010) Maize streak virus: an old and complex “emerging” pathogen. Mol Plant Pathol 11:1–12. https://doi.org/10.1111/j.1364-3703.2009.00568.x

    Article  CAS  Google Scholar 

  3. Martin DP, Shepherd DN (2009) The epidemiology, economic impact and control of maize streak disease. Food Secur 1:305–315. https://doi.org/10.1007/s12571-009-0023-1

    Article  Google Scholar 

  4. Martin DP, Willment JA, Rybicki EP (1999) Evaluation of maize streak virus pathogenicity in differentially resistant Zea mays genotypes. Phytopathology 89:695–700. https://doi.org/10.1094/Phyto.1999.89.8.695

    Article  CAS  Google Scholar 

  5. Pinner MS, Markham PG, Markham RH, Dekker L (1988) Characterization of maize streak virus: description of strains; symptoms. Plant Pathol 37:74–87. https://doi.org/10.1111/j.1365-3059.1988.tb02198.x

    Article  Google Scholar 

  6. Martin DP, Willment JA, Billharz R et al (2001) Sequence diversity and virulence in Zea mays of Maize streak virus isolates. Virology 288:247–255. https://doi.org/10.1006/viro.2001.1075

    Article  CAS  Google Scholar 

  7. Magenya OEV, Mueke J, Omwega C (2008) Significance and transmission of maize streak virus disease in Africa and options for management: a review. African J Biotechnol 7:4897–4910. https://doi.org/10.4314/ajb.v7i25.59697

    Article  Google Scholar 

  8. Lefeuvre P, Martin DP, Elena SF et al (2019) Evolution and ecology of plant viruses. Nat Rev Microbiol. https://doi.org/10.1038/s41579-019-0232-3

    Article  Google Scholar 

  9. Reynaud B, Peterschmitt M (1992) A study of the mode of transmission of maize streak virus by Cicadulina mbila using an enzyme-linked immunosorbent assay. Ann Appl Biol 121:85–94. https://doi.org/10.1111/j.1744-7348.1992.tb03989.x

    Article  Google Scholar 

  10. Mesfin T, Den Hollander J, Markham PG (1991) Cicadulina species and maize streak virus in Ethiopia. Trop Pest Manag 37:240–244. https://doi.org/10.1080/09670879109371592

    Article  Google Scholar 

  11. Abraham A (2019) Emerged plant virus disease in Ethiopian agriculture: causes and control options. Ethiop J Agric Sci 29:39–55

    Google Scholar 

  12. Deribe K, Meribo K, Gebre T et al (2012) The burden of neglected tropical diseases in Ethiopia, and opportunities for integrated control and elimination. Parasit Vectors 5:240. https://doi.org/10.1186/1756-3305-5-240

    Article  Google Scholar 

  13. Bjarnason M (1986) Progress in breeding for resistance to the maize streak virus disease. In: A Proc first Eastern, Cent South Africa Reg maize Work Lusaka, Zambia, March 10-17 1985

  14. Guadie D, Tesfaye K, Knierim D et al (2019) Molecular analysis of maize (Zea mays L.)-infecting mastreviruses in Ethiopia reveals marked diversity of virus genomes and a novel species. Virus Genes 55:339–345. https://doi.org/10.1007/s11262-019-01655-1

    Article  CAS  Google Scholar 

  15. Dawit A, Chilot Y, Adam B, Agajie T (2014) Situation and Outlook of Maize in Ethiopia of Maize in Ethiopia

  16. Knoema (2020) Ethiopia—Maize production quantity. In: https://knoema.com/atlas/Ethiopia/topics/Agriculture/Crops-Production-Quantity-tonnes/Maize-production

  17. Harkins GW, Martin DP, Duffy S et al (2009) Dating the origins of the maize-adapted strain of maize streak virus, MSV-A. J Gen Virol 90:3066–3074. https://doi.org/10.1099/vir.0.015537-0

    Article  CAS  Google Scholar 

  18. Owor BE, Martin DP, Shepherd DN et al (2007) Genetic analysis of maize streak virus isolates from Uganda reveals widespread distribution of a recombinant variant. J Gen Virol 88:3154–3165. https://doi.org/10.1099/vir.0.83144-0

    Article  CAS  Google Scholar 

  19. Monjane AL, Harkins GW, Martin DP et al (2011) Reconstructing the history of maize streak virus strain a dispersal to reveal diversification hot spots and its origin in Southern Africa. J Virol 85:9623–9636. https://doi.org/10.1128/JVI.00640-11

    Article  CAS  Google Scholar 

  20. Varsani A, Shepherd DN, Monjane AL et al (2008) Recombination, decreased host specificity and increased mobility may have driven the emergence of maize streak virus as an agricultural pathogen. J Gen Virol 89:2063–2074. https://doi.org/10.1099/vir.0.2008/003590-0

    Article  CAS  Google Scholar 

  21. Pande D, Madzokere E, Hartnady P et al (2017) The role of Kenya in the trans-African spread of maize streak virus strain A. Virus Res 232:69–76. https://doi.org/10.1016/J.virusres.2017.02.005

    Article  CAS  Google Scholar 

  22. Keno T, Azmach G, Wegary D et al (2018) Major biotic maize production stresses in Ethiopia and their management through host resistance. African J Agric Res 13:1042–1052. https://doi.org/10.5897/AJAR2018.13163

    Article  CAS  Google Scholar 

  23. Mesfin T, Den Hollander J, Markham PG (1995) Feeding activities of Cicadulina mbila (Hemiptera: Cicadellidae) on different host-plants. Bull Entomol Res 85:387–396. https://doi.org/10.1017/S0007485300036129

    Article  Google Scholar 

  24. Blankson D, Asare-Bediako E, Frimpong AK et al (2018) Incidence and severity of maize streak disease: The influence of tillage, fertilizer application and maize variety. African J Agric Res 13:551–560. https://doi.org/10.5897/ajar2017.12873

    Article  CAS  Google Scholar 

  25. Shepherd DN, Martin DP, Lefeuvre P et al (2008) A protocol for the rapid isolation of full geminivirus genomes from dried plant tissue. J Virol Methods 149:97–102. https://doi.org/10.1016/j.jviromet.2007.12.014

    Article  CAS  Google Scholar 

  26. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  Google Scholar 

  27. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278. https://doi.org/10.1093/bioinformatics/btu531

    Article  CAS  Google Scholar 

  28. Martin DP, Murrell B, Golden M et al (2015) RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol 1:1–5. https://doi.org/10.1093/ve/vev003

    Article  Google Scholar 

  29. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109

    Article  CAS  Google Scholar 

  30. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees

  31. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  Google Scholar 

  32. Guindon S, Dufayard J-F, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  Google Scholar 

  33. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116. https://doi.org/10.1093/oxfordjournals.molbev.a026201

    Article  CAS  Google Scholar 

  34. Hoang DT, Chernomor O, von Haeseler A et al (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522. https://doi.org/10.1093/molbev/msx281

    Article  CAS  Google Scholar 

  35. Asiimwe T, Stewart LR, Willie K et al (2020) Maize lethal necrosis viruses and other maize viruses in Rwanda. Plant Pathol 69:585–597. https://doi.org/10.1111/ppa.13134

    Article  CAS  Google Scholar 

  36. Tavare S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Some Math Quest Biol/DNA Seq Anal Ed by Robert M Miura

  37. Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314. https://doi.org/10.1007/BF00160154

    Article  CAS  Google Scholar 

  38. Magenya OE V, Mueke J, Omwega C (2009) Association of maize streak virus disease and its vectors (Homoptera: Cicadelidae) with soil macronutrients and altitudes in Kenya

  39. Lencho A, Abraham A, et al. (1997) Undefined Identification of viruses from maize and grass hosts. agris.fao.org

  40. Redinbaugh MG, Zambrano JL (2014) Control of Virus Diseases in Maize

  41. Alegbejo MD, Olojede SO, Kashina BD, Abo ME (2002) Maize streak mastrevirus in Africa: distribution, transmission, epidemiology, economic significance and management strategies. J Sustain Agric 19:35–45. https://doi.org/10.1300/J064v19n04_05

    Article  Google Scholar 

  42. Kyetere DT, Ming R, McMullen MD et al (1999) Genetic analysis of tolerance to maize streak virus in maize. Genome 42:20–26. https://doi.org/10.1139/g98-099

    Article  Google Scholar 

  43. Lagat M, Danson J, Kimani M, Kuria A (2008) Quantitative trait loci for resistance to maize streak virus disease in maize genotypes used in hybrid development. African J Biotechnol 7:2573–2577

    CAS  Google Scholar 

  44. Fauquet CM, Briddon RW, Brown JK et al (2008) Geminivirus strain demarcation and nomenclature. Arch Virol 153:783–821. https://doi.org/10.1007/s00705-008-0037-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere gratitude to Mr. Tolcha Tufa for producing the map of the surveyed areas. The facilitation and support provided by Associate Professor Darren Martin in getting samples tested at the University of Cape Town in South Africa deserve our special appreciation.

Funding

KAO was supported by the National Research Foundation (NRF) South Africa and The World Academy of Science (TWAS) Grant number 105461. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehinde A. Oyeniran.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (FASTA 158 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketsela, D., Oyeniran, K.A., Feyissa, B. et al. Molecular identification and phylogenetic characterization of A-strain isolates of maize streak virus from western Ethiopia. Arch Virol 167, 2753–2759 (2022). https://doi.org/10.1007/s00705-022-05614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05614-4

Navigation