Skip to main content

Advertisement

Log in

Evolutionary analysis of rabies virus isolates from Georgia

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Genetic relationships between rabies virus (RABV) isolates recovered from dogs, jackals, and cattle in Georgia and their closest relatives were investigated by comparing their nucleoprotein (N) gene sequences. Multiple isolates from dogs and cattle were found to share identical N gene sequences, indicating a risk of dog-to-cattle rabies transmission in Georgia. Exhibiting population-selective sweeps, expansion, and genetic recombination, evolutionary analysis of Georgian RABV isolates (all belonging to the cosmopolitan clade) and isolates from Russia, Turkey, and elsewhere provided further evidence for coinfections with different rabies virus strains and transborder transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Mersini K (2020) Cost-effectiveness evaluation of the national rabies control program in Georgia and recommendations for improvement. The FAO Division/Office FEGEO, pp 1-36

  2. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595. https://doi.org/10.1093/genetics/123.3.585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205. https://doi.org/10.1093/molbev/mst030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457. https://doi.org/10.1093/bioinformatics/btq429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  CAS  PubMed  Google Scholar 

  7. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  8. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035. https://doi.org/10.1073/pnas.0404206101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bandelt H-J, Dress AWM (1992) Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol Phylogenet Evol 1:242–252. https://doi.org/10.1016/1055-7903(92)90021-8

    Article  CAS  PubMed  Google Scholar 

  10. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. https://doi.org/10.1093/molbev/msj030

    Article  CAS  PubMed  Google Scholar 

  11. Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC (1999) Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160. https://doi.org/10.1128/JVI.73.1.152-160.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gigante CM, Yale G, Condori RE, Costa NC, Long NV, Minh PQ, Chuong VD, Tho ND, Thanh NT, Thin NX, Hanh NTH, Wambura G, Ade F, Mito O, Chuchu V, Muturi M, Mwatondo A, Hampson K, Thumbi SM, Thomae BG, de Paz VH, Meneses S, Munyua P, Moran D, Cadena L, Gibson A, Wallace RM, Pieracci EG, Li Y (2020) Portable rabies virus sequencing in canine rabies endemic countries using the Oxford Nanopore MinION. Viruses 12(11):1255. https://doi.org/10.3390/v12111255

    Article  CAS  PubMed Central  Google Scholar 

  13. Troupin C, Dacheux L, Tanguy M, Sabeta C, Blanc H, Bouchier C, Vignuzzi M, Duchene S, Holmes EC, Bourhy H (2016) Large-scale phylogenomic analysis reveals the complex evolutionary history of rabies virus in multiple carnivore hosts. PLoS Pathog 12:e1006041. https://doi.org/10.1371/journal.ppat.1006041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Noman Z, Anika TT, Haque ZF, Rahman AKMA, Ward MP, Martínez-López B (2021) Risk factors for rabid animal bites: a study in domestic ruminants in Mymensingh district, Bangladesh. Epidemiol Infect 149:e76. https://doi.org/10.1017/S095026882100056X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson N, Freuling C, Vos A, Un H, Valtchovski R, Turcitu M, Dumistrescu F, Vuta V, Velic R, Sandrac V, Aylan O, Müller T, Fooks AR (2008) Epidemiology of rabies in Southeast Europe. Dev Biol (Basel) 131:189–198

    CAS  Google Scholar 

  16. Turcitu MA, Barboi G, Vuta V, Mihai I, Boncea D, Dumitrescu F, Codreanu MD, Johnson N, Fooks AR, Müller T, Freuling CM (2010) Molecular epidemiology of rabies virus in Romania provides evidence for a high degree of heterogeneity and virus diversity. Virus Res 150:28–33. https://doi.org/10.1016/j.virusres.2010.02.008

    Article  CAS  PubMed  Google Scholar 

  17. Simmonds P, Ansari MA (2021) Extensive C->U transition biases in the genomes of a wide range of mammalian RNA viruses; potential associations with transcriptional mutations, damage- or host-mediated editing of viral RNA. PLoS Pathog 17:e1009596. https://doi.org/10.1371/journal.ppat.1009596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bourhy H, Kissi B, Audry L, Smreczak M, Sadkowska-Todys M, Kulonen K, Tordo N, Zmudzinski JF, Holmes EC (1999) Ecology and evolution of rabies virus in Europe. J Gen Virol 80(Pt 10):2545–2557. https://doi.org/10.1099/0022-1317-80-10-2545

    Article  CAS  PubMed  Google Scholar 

  19. Kuzmina NA, Kuzmin IV, Ellison JA, Taylor ST, Bergman DL, Dew B, Rupprecht CE (2013) A reassessment of the evolutionary timescale of bat rabies viruses based upon glycoprotein gene sequences. Virus Genes 47:305–310. https://doi.org/10.1007/s11262-013-0952-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holmes EC, Woelk CH, Kassis R, Bourhy H (2002) Genetic constraints and the adaptive evolution of rabies virus in nature. Virology 292:247–257. https://doi.org/10.1006/viro.2001.1271

    Article  CAS  PubMed  Google Scholar 

  21. Zhai W, Nielsen R, Slatkin M (2009) An investigation of the statistical power of neutrality tests based on comparative and population genetic data. Mol Biol Evol 26:273–283. https://doi.org/10.1093/molbev/msn231

    Article  CAS  PubMed  Google Scholar 

  22. Sharma M, Fomda BA, Mazta S, Sehgal R, Singh BB, Malla N (2013) Genetic diversity and population genetic structure analysis of Echinococcus granulosus sensu stricto complex based on mitochondrial DNA signature. PLoS ONE 8:e82904. https://doi.org/10.1371/journal.pone.0082904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bourhy H, Reynes J-M, Dunham EJ, Dacheux L, Larrous F, Huong VTQ, Xu G, Yan J, Miranda MEG, Holmes EC (2008) The origin and phylogeography of dog rabies virus. J Gen Virol 89:2673–2681. https://doi.org/10.1099/vir.0.2008/003913-0

    Article  CAS  PubMed  Google Scholar 

  24. Liu W, Liu Y, Liu J, Zhai J, Xie Y (2011) Evidence for inter- and intra-clade recombinations in rabies virus. Infect Genet Evol 11:1906–1912. https://doi.org/10.1016/j.meegid.2011.08.031

    Article  CAS  PubMed  Google Scholar 

  25. He C-Q, Meng S-L, Yan H-Y, Ding N-Z, He H-B, Yan J-X, Xu G-L (2012) Isolation and identification of a novel rabies virus lineage in China with natural recombinant nucleoprotein gene. PLoS ONE 7:e49992. https://doi.org/10.1371/journal.pone.0049992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Stylianos Koulouris and Yves Van der Stede for their helpful discussions and editing of the manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

LT and EG mined the DNA sequence data from the NCBI GenBank database and performed the ST and genetic recombination analysis. SK and GL contributed to the phylogenetic and recombination analysis. JL and LT provided their expertise for the study and contributed to a draft of the manuscript. MK developed the concept and design for, and supervised the study, as well as drafted and formulated the manuscript.

Corresponding author

Correspondence to Mamuka Kotetishvili.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: William G Dundon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 579 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatadze, L., Gabashvili, E., Kobakhidze, S. et al. Evolutionary analysis of rabies virus isolates from Georgia. Arch Virol 167, 2293–2298 (2022). https://doi.org/10.1007/s00705-022-05550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05550-3

Navigation