Skip to main content
Log in

First detection of Lake Sinai virus in the Czech Republic: a potential member of a new species

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Lake Sinai virus (LSV) is one of over 20 honey bee viruses. Variants of LSV have been classified as members of two officially recognised species, Lake Sinai virus 1 and Lake Sinai virus 2. However, there are currently a limited number of whole-genome sequences, and the genetic variability of the virus indicates that additional species may need to be established. Extracted nucleic acid of 209 honey bee samples was screened by PCR for 11 honey bee viruses. LSV was the third most abundant virus (36.9% of positive samples), after Apis mellifera filamentous virus (72.2%) and deformed wing virus (52.5%). LSV-positive samples were analyzed further by PCR with primers targeting the region encoding the viral RNA-dependent RNA polymerase. Subsequently, the PCR products were sequenced, and the resulting sequences were used for a first round of phylogenetic analysis. Based on those results, several isolates were selected for whole-genome sequencing, and the complete genome sequences were used for additional phylogenetic analysis. The results indicated the presence of at least three genetically distinct groups of LSV in the Czech Republic, the most prevalent one being related to LSV 2 but too dissimilar to be considered a member of the same species. Two sequences of a major LSV strain cluster native to the Czech Republic were determined, representing the first Czech LSV strains published to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The GenBank accession numbers for the LSV sequences reported in this paper are MZ773494, MZ773495, and OK245389-OK245413, as specified in a supplementary table (Online Resource 2).

References

  1. Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes of world crops. Proc R Soc B 274(1608):303–313. https://doi.org/10.1098/rspb.2006.3721

    Article  PubMed  Google Scholar 

  2. Hung K-LJ, Kingston JM, Albrecht M, Holway DA, Kohn JR (2018) The worldwide importance of honey bees as pollinators in natural habitats. Proc Biol Sci 285(1870):20172140. https://doi.org/10.1098/rspb.2017.2140

    Article  PubMed  PubMed Central  Google Scholar 

  3. Valido A, Rodríguez-Rodríguez MC, Jordano P (2019) Honey bees disrupt the structure and functionality of plant-pollinator networks. Sci Rep 9:4711. https://doi.org/10.1038/s41598-019-41271-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Ecol Evol 25(6):345–353. https://doi.org/10.1016/j.tree.2010.01.007

    Article  Google Scholar 

  5. Genersch E (2010) Honey bee pathology: current threats to honey bees and beekeeping. Appl Microbiol Biotechnol 87:87–97. https://doi.org/10.1007/s00253-010-2573-8

    Article  CAS  PubMed  Google Scholar 

  6. De Miranda JR, Bailey L, Ball BV, Blanchard P, Budge GE, Chajenovsky N, Chen Y-P, Gauthier L, Genersch E, de Graaf DC, Ribiére M, Ryabov E, De Smet L, van der Steen JJM (2013) Standard methods for virus research in Apis mellifera. J Apic Res 42(4):1–56. https://doi.org/10.3896/IBRA.1.52.4.22

    Article  CAS  Google Scholar 

  7. Carreck NL, Ball BV, Martin SJ (2010) Honey bee colony collapse and changes in viral prevalence associated with Varroa destructor. J Apic Res 49(1):93–94. https://doi.org/10.3896/IBRA.1.49.1.13

    Article  Google Scholar 

  8. Genersch E, Aubert M (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Vet Res 41(6):54. https://doi.org/10.1051/vetres/2010027

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gisder S, Aumeier P, Genersch E (2009) Deformed wing virus: replication and viral load in mites (Varroa destructor). J Gen Virol 90(2):463–467. https://doi.org/10.1099/vir.0.005579-0

    Article  CAS  PubMed  Google Scholar 

  10. Wilfert L, Long G, Leggett HC, Schmid-Hempel P, Butlin R, Martin SJM, Boots M (2019) Deformed wing virus in a recent global epidemic in honey bees driven by Varroa mites. Science 351(6273):594–597. https://doi.org/10.1126/science.aac9976

    Article  CAS  Google Scholar 

  11. vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS (2009) Colony collapse disorder: a descriptive study. PLoS ONE 4(8):e6481. https://doi.org/10.1371/journal.pone.0006481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Runckel C, Flenniken ML, Engel JC, Ruby JC, Ganem D, Andino R, DeRisi JL (2011) Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS ONE 6(6):e20656. https://doi.org/10.1371/journal.pone.0020656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. International Committee on Taxonomy of Viruses (ICTV). Available online: https://ictv.global/taxonomy/ [15 July 2021]

  14. Cornman RS (2019) Relative abundance and molecular evolution of Lake Sinai virus (Sinaivirus) clades. Peer J 7:e6305. https://doi.org/10.7717/peerj.6305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Šimenc L, Kuhar U, Jamnikar-Ciglenečki U, Toplak I (2020) First complete genome of Lake Sinai Virus lineage 3 and genetic diversity of Lake Sinai Virus strains from honey bees and bumble bees. J Econ Entomol 20(20):1–7. https://doi.org/10.1093/jee/toaa049

    Article  CAS  Google Scholar 

  16. Ravoet J, de Smet L, Meeus I, Smagghe G, Wenseleers T, de Graaf DC (2014) Widespread occurrence of honey bee pathogens in solitary bees. J Invertebr Pathol 122:55–58. https://doi.org/10.1016/j.jip.2014.08.007

    Article  PubMed  Google Scholar 

  17. Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Dempsey DM, Dutilh BE, Harrach B, Harrison RL, Hendrickson RC, Junglen S, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Nibert M, Orton RJ, Rubino L, Sabanadzovic S, Simmonds P, Smith DB, Varsani A, Zerbini FM, Davison AJ (2020) Changes to virus taxonomy and the statutes ratified by the international committee on taxonomy of viruses. Arch Virol 165(11):2737–2748. https://doi.org/10.1007/s00705-020-04752-x

    Article  CAS  PubMed  Google Scholar 

  18. Bigot D, Dalmon A, Bronwen R, Hou C, Germain M, Romary M, Deng S, Diao Q, Weinert LA, Cook JM, Herniou EA, Gayral P (2017) The discovery of halictivirus resolves the Sinaivirus phylogeny. J Gen Virol 98(11):2864–2875. https://doi.org/10.1099/jgv.0.000957

    Article  CAS  PubMed  Google Scholar 

  19. Daughenbaugh KF, Martin M, Brutscher LM, Cavigli I, Garcia E, Lavin M, Flenniken ML (2015) Honey bee infecting lake sinai viruses. Viruses 7(6):3285–3309. https://doi.org/10.3390/v7062772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cepero A, Ravoet J, Gómez-Moracho T, Bernal JL, Del Nozal MJ, Bartolomé C, Maside X, Meana A, González-Porto AV, de Graaf DC, Martín-Hernandez R, Higes M (2014) Holistic screening of collapsing honey bee colonies in Spain: a case study. BMC Res 7:649. https://doi.org/10.1186/1756-0500-7-649

    Article  Google Scholar 

  21. Granberg F, Vincente-Rubiano M, Rubio-Guerri C, Karlsson OE, Kukielka D, Belák S, Sánchez-Vizcaíno JM (2013) Metagenomic detection of viral pathogens in Spanish honey bees: co-infection by aphid lethal paralysis, Israel acute paralysis and lake Sinai viruses. PLoS ONE 8(2):e57459. https://doi.org/10.1371/journal.pone.0057459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ravoet J, Maharramov J, Meeus I, De Smet L, Wenseleers T, Smagghe G, de Graaf DC (2013) Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS ONE 8(8):e72443. https://doi.org/10.1371/journal.pone.0072443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Faurot-Daniels C, Glenny W, Daughenbaugh KF, McMenamin AJ, Burkle LA, Flenniken ML (2020) Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health. PLoS ONE 15(9):e0237544. https://doi.org/10.1371/journal.pone.0237544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D’Alvise P, Seeburger V, Gihrin K, Kieboom M, Hsselmann M (2019) Seasonal dynamics and co-occurrence patterns of honey bee pathogens revealed by high-throughput RT-qPCR analysis. Ecol Evol 9:10241–10252. https://doi.org/10.1002/ece3.5544

    Article  PubMed  PubMed Central  Google Scholar 

  25. Menail AH, Piot N, Meeus I, Smagghe G, Loucif-Ayad W (2016) Large pathogen screening reveals first report of Megaselia scalaris (Diptera:Phoridae) parasitizing Apis mellifera intermissa (Hymenoptera: Apidae). J Invertebr Pathol 137:33–37. https://doi.org/10.1016/j.jip.2016.04.007

    Article  PubMed  Google Scholar 

  26. Ravoet J, De Smet L, Wenseleers T, de Graaf DC (2015) Vertical transmission of honey bee viruses in a Belgian queen breeding program. BMC Vet Res 11:61. https://doi.org/10.1186/s12917-015-0386-9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tozkar CÖ, Kence M, Kence A, Huang Q, Evans JD (2015) Metatranscriptomic analyses of honey bee colonies. Front Genet 6:100. https://doi.org/10.3389/fgene.2015.00100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gamboa V, Ravoet J, Brunain M, Smagghe G, Meeus I, Figueroa J, Riaño D, de Graaf DC (2015) Bee pathogens found in Bombus atratus from Cambodia: a case study. J Invertebr Pathol 129:36–39. https://doi.org/10.1016/j.jip.2015.05.013

    Article  PubMed  Google Scholar 

  29. Parmentier L, Smagghe G, de Graaf DC, Meeus I (2016) Varroa desctructor Macula-like virus, Lake Sinai virus and other new RNA viruses in wild bumblebee hosts (Bombus pascuorum, Bombus lapidarius and Bombus pratorum). J Invertebr Pathol 134:6–11. https://doi.org/10.1016/j.jip.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  30. Ravoet J, De Smet L, Wenseleers T, de Graaf DC (2015) Genome sequence heterogeneity of Lake Sinai virus found in honey bees and Orf1/RdRP-based polymorphisms in a single host. Virus Res 201:67–72. https://doi.org/10.1016/j.virusres.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  31. Prodělalová J, Moutelíková R, Titěra D (2019) Multiple virus infections in Western honey bee (Apis mellifera L.) ejaculate used for instrumental insemination. Viruses 11:306. https://doi.org/10.3390/v11040306

    Article  CAS  PubMed Central  Google Scholar 

  32. Berényi O, Bakonyi T, Derakhshifar I, Köglberger H, Topolska G, Ritter W, Pechhacker H, Nowotny N (2007) Phylogenetic analysis of deformed Wing Virus genotypes from diverse geographic origins indicates recent global distribution of the virus. Appl Environ Microbiol 73(11):3605–3611. https://doi.org/10.1128/AEM.00696-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blanchard P, Olivier V, Iscache AL, Celle O, Schurr F, Lallemand P, Ribière M (2008) Improvement of RT-PCR detection of Chronic bee paralysis virus (CBPV) required by the description of genomic variability in French CBPV isolates. J Invertebr Pathol 97(2):182–185. https://doi.org/10.1016/j.jip.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  34. Blanchard P, Schurr F, Olivier V, Celle O, Antùnez K, Bakonyi T, Berthoud H, Haubruge E, Higes M, Kasprzak S, Koeglberger H, Kryger P, Thiéry R, Ribière M (2009) Phylogenetic analysis of the RNA-dependent RNA polymerase (RdRp) and a predicted structural protein (pSP) of the Chronic bee paralysis virus (CBPV) isolated from various geographic regions. Virus Res 144(1–2):334–338. https://doi.org/10.1016/j.virusres.2009.04.025

    Article  CAS  PubMed  Google Scholar 

  35. Cornman RS, Schatz MC, Johnson JS, Chen YP, Pettis J, Hunt G, Bourgeois L, Elsik C, Anderson D, Grozinger CM, Evans JD (2010) Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genom 11:602. https://doi.org/10.1186/1471-2164-11-602

    Article  CAS  Google Scholar 

  36. De Miranda JR, Cordoni G, Budge G (2010) The Acute bee paralysis virus—Kashmir bee virus—Israeli acute paralysis virus complex. J Invertebr Pathol 103(Suppl 1):30–47. https://doi.org/10.1016/j.jip.2009.06.014

    Article  CAS  Google Scholar 

  37. Gauthier L, Ravallec M, Tournaire M, Cousserans F, Bergoin M, Dainat B, de Miranda JR (2011) Viruses associated with ovarian degeneration in Apis mellifera L. queens. PLoS ONE 6(1):e16217. https://doi.org/10.1371/journal.pone.0016217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grabensteiner E, Ritter W, Carter MJ, Davison S, Pechhacker H, Kolodziejek J, Boecking O, Derakhshifar I, Moosbeckhofer R, Licek E, Nowotny N (2001) Sacbrook virus of the honeybee (Apis mellifera): rapid identification and phylogenetic analysis using reverse transcription-PCR. Clin Diagn Lab Immunol 8(1):93–104. https://doi.org/10.1128/CDLI.8.1.93-104.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grabensteiner E, Bakonyi T, Ritter W, Pechhacker H, Nowotny N (2007) Development of a multiplex RT-PCR for the simultaneous detection of three viruses of the honeybee (Apis mellifera L.): Acute bee paralysis virus, Black Queen cell virus and Sacbrood. J Invertebr Pathol 94(3):222–225. https://doi.org/10.1016/j.jip.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  40. Palacious G, Hui J, Quan PL, Kalkstein A, Honkavuori KS, Bussetti AV, Conlan S, Evans J, Chen YP, vanEngelsdorp D, Efrat H, Pettis J, Cox-Foster D, Holmes EC, Briese T, Lipkin WI (2008) Genetic analysis of the Israel Acute Paralysis Virus: distinct clusters are circulating in the United States. Virol. J. 82(13):6209–6217. https://doi.org/10.1128/JVI.00251-08

    Article  CAS  Google Scholar 

  41. Tapaszti Z, Forgách P, Kovágó C, Topolska G, Nowotny N, Rusvai M, Bakonyi T (2009) Genetic analysis and phylogenetic comparison of Black queen cell virus genotypes. Vet Microbiol 139(3–4):227–234. https://doi.org/10.1016/j.vetmic.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  42. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C content biases. Mol Biol Evol 9:678–687. https://doi.org/10.1093/oxfordjournals.molbev.a040752

    Article  CAS  PubMed  Google Scholar 

  43. Milne L, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193–202. https://doi.org/10.1093/bib/bbs012

    Article  CAS  PubMed  Google Scholar 

  44. Berenyi O, Bakonyi T, Derakhshifar I, Koglberger H, Nowotny N (2006) Occurrence of six honey bee viruses in diseased Austrian apiaries. Appl Environ Microbiol 72:2414–2420. https://doi.org/10.1128/AEM.72.4.2414-2420.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Forgách P, Bakonyi T, Tapaszti Z, Nowotny N, Rusvai M (2008) Prevalence of pathogenic bee viruses in Hungarian apiaries: situation before joining the European Union. J Invertebr Pathol 98:235–238. https://doi.org/10.1016/j.jip.2007.11.002

    Article  PubMed  Google Scholar 

  46. Tentcheva D, Gauthier L, Zappulla N, Dainat B, Cousserans F, Colin ME, Bergoin M (2004) Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl Environ Microbiol 70:7185–7191. https://doi.org/10.1128/AEM.70.12.7185-7191.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hartmann U, Forsgren E, Charrière J-D, Neumann P, Gauthier L (2015) Dynamics of Apis mellifera filamentous virus (AmFV) infections in honey bees and relationships with other parasites. Viruses 7:2654–2667. https://doi.org/10.3390/v7052654

    Article  PubMed  PubMed Central  Google Scholar 

  48. Daughenbaugh KF, Runckel C, DeRisi J, Flenniken ML (2015) Novel virus species (Lake Sinai virus 1 and Lake Sinai virus 2) in a new proposed virus genus (Sinaivirus), which infect the Western honey bee (Apis mellifera). Available online: https://talk.ictvonline.org/files/ictv_official_taxonomy_updates_since_the_8th_report/m/animal-ssrna-viruses/5881/download [10 August 2021].

  49. Remnant EJ, Shi M, Buchmann G, Blacquiere T, Holmes EC, Beekman M, Ashe A (2017) A diverse range of novel RNA viruses in geographically distinct honey bee populations. J Virol 15(16):e00158-e217. https://doi.org/10.1128/JVI.00158-17

    Article  Google Scholar 

  50. Lauring AS, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLoS Pathog 6(7):e1001005. https://doi.org/10.1371/journal.ppat.1001005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Audino R, Domingo E (2015) Viral quasispecies. Virology 479–480:46–51. https://doi.org/10.1016/j.virol.2015.03.022

    Article  CAS  Google Scholar 

  52. Domingo E, Sheldon J, Perales C (2012) Viral quasispecies evolution. Microbiol Mol Biol Rev 76(2):159–219. https://doi.org/10.1128/MMBR.05023-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ing. Dalibor Titěra, CSc from the Bee Research Institute in Dol for kindly providing honey bee samples.

Funding

This research was funded by the Ministry of Agriculture of the Czech Republic, Grant number QK1910286.

Author information

Authors and Affiliations

Authors

Contributions

The experiments described in this study were conceived and designed by JP and RM. The diagnostic testing was performed by EČ and JP. Sequencing, genotyping, data analysis, and writing of the manuscript were carried out by EČ and RM. All authors reviewed the manuscript and approved the final version. JP acquired funding and administered the project.

Corresponding author

Correspondence to Eliška Čukanová.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Simona Abba' .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 13 KB)

Supplementary file2 (XLSX 12 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čukanová, E., Moutelíková, R. & Prodělalová, J. First detection of Lake Sinai virus in the Czech Republic: a potential member of a new species. Arch Virol 167, 2213–2222 (2022). https://doi.org/10.1007/s00705-022-05548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05548-x

Navigation