Skip to main content
Log in

Multiple reassortment and interspecies transmission events contribute to the diversity of porcine-like human rotavirus C strains detected in South Korea

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Globally, rotavirus C (RVC) causes diarrhoeal outbreaks, mainly in swine, with sporadic incidents in human, bovine, and canine populations. In this study, two human RVC strains, RVC/Human-wt/KOR/CAU13-1-77/2013 and RVC/Human-wt/KOR/CAU14-1-242/2014, were isolated in South Korea, and their complete genome sequences were compared with those of other human- and animal-origin RVC strains found worldwide. Genetic analysis revealed that these viruses have a G4-P[2]-I2-R2-C2-M3-A2-N2-T2-E2-H2 genotype constellation. Phylogenetic analysis indicated that these Korean RVC strains belong to the M3 lineage of the VP3 gene in human RVC from Japan and China and porcine RVC from Japan. These results suggest that RVC circulates in northeast Asia in both the human and porcine populations. These results also provide evidence of interspecies RVC reassortment events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

The nucleotide sequences obtained in this study were deposited in the GenBank database at NCBI under the accession numbers KT284776–KT284786 for the CAU14-1-242 strain and KT355386–KT355396 for the CAU13-1-77 strain.

References

  1. Desselberger U (2014) Rotaviruses. Virus Res 190:75–96. doi: https://doi.org/10.1016/j.virusres.2014.06.016

    Article  CAS  PubMed  Google Scholar 

  2. Knipe D, Howley P (2013) Fields Virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  3. Walker PJ, Siddell SG, Lefkowitz EJ et al (2021) Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch Virol 166:2633–2648. doi: https://doi.org/10.1007/s00705-021-05156-1

    Article  CAS  PubMed  Google Scholar 

  4. Rodger SM, Bishop RF, Holmes IH (1982) Detection of a rotavirus-like agent associated with diarrhea in an infant. J Clin Microbiol 16:724–726. doi: https://doi.org/10.1128/jcm.16.4.724-726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Torres-Medina A (1987) Isolation of an atypical rotavirus causing diarrhea in neonatal ferrets. Lab Anim Sci 37:167–171

    CAS  PubMed  Google Scholar 

  6. Otto P, Schulze P, Herbst W (1999) Demonstration of group C rotaviruses in fecal samples of diarrheic dogs in Germany. Arch Virol 144:2467–2473. doi: https://doi.org/10.1007/s007050050659

    Article  CAS  PubMed  Google Scholar 

  7. Mawatari T, Taneichi A, Kawagoe T, Hosokawa M, Togashi K, Tsunemitsu H (2004) Detection of a bovine group C rotavirus from adult cows with diarrhea and reduced milk production. J Vet Med Sci 66:887–890. doi: https://doi.org/10.1292/jvms.66.887

    Article  CAS  PubMed  Google Scholar 

  8. Wise AG, Smedley RC, Kiupel M, Maes RK (2009) Detection of group C rotavirus in juvenile ferrets (Mustela putorius furo) with diarrhea by reverse transcription polymerase chain reaction: sequencing and analysis of the complete coding region of the VP6 gene. Vet Pathol 46:985–991. doi: https://doi.org/10.1354/vp.08-VP-0315-S-FL

    Article  CAS  PubMed  Google Scholar 

  9. Jiang B, Dennehy PH, Spangenberger S, Gentsch JR, Glass RI (1995) First detection of group C rotavirus in fecal specimens of children with diarrhea in the United States. J Infect Dis 172:45–50. doi: https://doi.org/10.1093/infdis/172.1.45

    Article  CAS  PubMed  Google Scholar 

  10. Kuzuya M, Fujii R, Hamano M, Nishijima M, Ogura H (2007) Detection and molecular characterization of human group C rotaviruses in Okayama Prefecture, Japan, between 1986 and 2005. J Med Virol 79:1219–1228. doi: https://doi.org/10.1002/jmv.20910

    Article  CAS  PubMed  Google Scholar 

  11. Bányai K, Jiang B, Bogdán A, Horváth B, Jakab F, Meleg E, Martella V, Magyari L, Melegh B, Szűcs G (2006) Prevalence and molecular characterization of human group C rotaviruses in Hungary. J Clin Virol 37:317–322. doi: https://doi.org/10.1016/j.jcv.2006.08.017

    Article  CAS  PubMed  Google Scholar 

  12. Luchs A, Morillo SG, de Oliveira CM, Timenetsky MdCST (2011) Monitoring of group C rotavirus in children with acute gastroenteritis in Brazil: an emergent epidemiological issue after rotavirus vaccine? J Med Virol 83:1631–1636. doi: https://doi.org/10.1002/jmv.22140

    Article  PubMed  Google Scholar 

  13. Chen L, Zhao D-J, Yang H, Zhang H-L, Yao X-J, Zhang R-L, He Y-Q (2015) Whole-genome sequences of two rare human group C rotavirus strains isolated from two cases of acute gastroenteritis. Genome Announc 3:e01014–01015. doi: https://doi.org/10.1128/genomeA.01014-15

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mukherjee A, Mullick S, Deb AK, Panda S, Chawla-Sarkar (2013) First report of human rotavirus G8P [4] gastroenteritis in India: Evidence of ruminants‐to‐human zoonotic transmission. J Med Virol 85:537–545. doi: https://doi.org/10.1002/jmv.23483

    Article  CAS  PubMed  Google Scholar 

  15. Iturriza-Gomara M, Clarke I, Desselberger U, Brown D, Thomas D, Gray J (2004) Seroepidemiology of group C rotavirus infection in England and Wales. Eur J Epidemiol 19:589–595. doi: https://doi.org/10.1023/b:ejep.0000032381.36658.cb

    Article  PubMed  Google Scholar 

  16. Gabbay YB, Borges AA, Oliveira DS, Linhares AC, Mascarenhas JD, Barardi CR, Simões CM, Wang Y, Glass RI, Jiang B (2008) Evidence for zoonotic transmission of group C rotaviruses among children in Belém, Brazil. J Med Virol 80:1666–1674. doi: https://doi.org/10.1002/jmv.21250

    Article  CAS  PubMed  Google Scholar 

  17. Joshi M, Jare V, Gopalkrishna (2017) Group C rotavirus infection in patients with acute gastroenteritis in outbreaks in western India between 2006 and 2014. Epidemiol Infect 145:310–315. doi: https://doi.org/10.1017/S0950268816002363

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto D, Ghosh S, Kuzuya M, Wang Y-H, Zhou X, Chawla-Sarkar M, Paul SK, Ishino M (2011) Whole-genome characterization of human group C rotaviruses: identification of two lineages in the VP3 gene. J Gen Virol 92:361–369. doi: https://doi.org/10.1099/vir.0.027375-0

    Article  CAS  PubMed  Google Scholar 

  19. Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Bányai K, Estes MK, Gentsch JR, Iturriza-Gómara M, Kirkwood CD (2008) Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol 153:1621–1629. doi: https://doi.org/10.1007/s00705-008-0155-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matthijnssens J, Taraporewala ZF, Yang H, Rao S, Yuan L, Cao D, Hoshino Y, Mertens PP, Carner GR, McNeal M (2010) Simian rotaviruses possess divergent gene constellations that originated from interspecies transmission and reassortment. J Virol 84:2013–2026. doi: https://doi.org/10.1128/JVI.02081-09

    Article  CAS  PubMed  Google Scholar 

  21. Amimo JO, Vlasova AN, Saif LJ (2013) Prevalence and genetic heterogeneity of porcine group C rotaviruses in nursing and weaned piglets in Ohio, USA and identification of a potential new VP4 genotype. Vet Microbiol 31:164:27–38. doi: https://doi.org/10.1016/j.vetmic.2013.01.039

    Article  CAS  Google Scholar 

  22. Moon S, Humphrey C, Kim J, Baek L, Song JW, Song KJ, Jiang B (2011) First detection of group C rotavirus in children with acute gastroenteritis in South Korea. Clin Microbiol Infect 17:244–247. doi: https://doi.org/10.1111/j.1469-0691.2010.03270.x

    Article  CAS  PubMed  Google Scholar 

  23. Baek IH, Than VT, Kim H, Lim I, Kim W (2013) Full genomic characterization of a group C rotavirus isolated from a child in South Korea. J Med Virol 85:1478–1484. doi: https://doi.org/10.1002/jmv.23587

    Article  CAS  PubMed  Google Scholar 

  24. Jeong Y-J, Park S-I, Hosmillo M, Shin D-J, Chun Y-H, Kim H-J, Kwon H-J, Kang S-Y, Woo S-K, Park S-J (2009) Detection and molecular characterization of porcine group C rotaviruses in South Korea. Vet Microbiol 138:217–224. doi: https://doi.org/10.1016/j.vetmic.2009.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park S-I, Jeong Y-J, Kim H-J, Park J-G, Kang S-Y, Woo S-K, Kim C-H, Jung C-H, Kang M-I, Cho K-O (2011) Genetically diverse group C rotaviruses cause sporadic infection in Korean calves. J Vet Med Sci 73:479–482. doi: https://doi.org/10.1292/jvms.10-0280

    Article  PubMed  Google Scholar 

  26. Jeong Y-J, Matthijnssens J, Kim D-S, Kim J-Y, Alfajaro MM, Park J-G, Hosmillo M, Son K-Y, Soliman M, Baek Y-B (2015) Genetic diversity of the VP7, VP4 and VP6 genes of Korean porcine group C rotaviruses. Vet Microbio 176:61–69. doi: https://doi.org/10.1016/j.vetmic.2014.12.024

    Article  CAS  Google Scholar 

  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi: https://doi.org/10.1093/nar/25.24.4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gascuel O, Steel M (2006) Neighbor-joining revealed. Mol Biol Evol 23:1997–2000. doi: https://doi.org/10.1093/molbev/msl072

    Article  CAS  PubMed  Google Scholar 

  29. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi: https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  30. Jukes TH, Cantor CR (1969) Evolution of Protein Molecules. In: Munro HN (ed) Mammalian Protein Metabolism. Academic Press, New York, pp 21–132. https://doi.org/10.1016/B978-1-4832-3211-9.50009-7

    Chapter  Google Scholar 

  31. James V, Lambden P, Caul E, Cooke S, Clarke I (1997) Seroepidemiology of human group C rotavirus in the UK. J Med Virol 52:86–91. doi: 10.1002/(sici)1096-9071(199705)52:1<86::aid-jmv14>3.0.co;2-z

  32. Nilsson M, Sigstam G, Svensson L (2000) Antibody prevalence and specificity to group C rotavirus in Swedish sera. J Med Virol 60:210–215. doi: 10.1002/(sici)1096-9071(200002)60:2<210::aid-jmv17>3.0.co;2-7

  33. Castello AA, Argüelles MH, Villegas GA, Olthoff A, Glikmann (2002) Incidence and prevalence of human group C rotavirus infections in Argentina. J Med Virol 67:106–112. doi: https://doi.org/10.1002/jmv.2198

    Article  PubMed  Google Scholar 

  34. Schnagl RD, Boniface K, Cardwell P, McCarthy D, Ondracek C, Coulson B, Erlich J, Morey F (2004) Incidence of group C human rotavirus in central Australia and sequence variation of the VP7 and VP4 genes. J Clin Microbiol 42:2127–2133. doi: https://doi.org/10.1128/JCM.42.5.2127-2133.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Soma J, Tsunemitsu H, Miyamoto T, Suzuki G, Sasaki T, Suzuki T (2013) Whole-genome analysis of two bovine rotavirus C strains: Shintoku and Toyama. J Gen Virol 94:128–135. doi: https://doi.org/10.1099/vir.0.046763-0

    Article  CAS  PubMed  Google Scholar 

  36. Marton S, Deák J, Dóró R, Csata T, Farkas SL, Martella V (2015) Reassortant human group C rotaviruses in Hungary. Infect Genet Evol 34:410–414. doi: https://doi.org/10.1016/j.meegid.2015.05.007

    Article  PubMed  Google Scholar 

  37. Matthijnssens J, Bilcke J, Ciarlet M, Martella V, Bányai K, Rahman M, Zeller M, Beutels P, Van Damme P, Van Ranst M (2009) Rotavirus disease and vaccination: impact on genotype diversity. Future Microbiol 4:1303–1316. doi: https://doi.org/10.2217/fmb.09.96

    Article  CAS  PubMed  Google Scholar 

  38. Ogden KM, Snyder MJ, Dennis AF, Patton JT (2014) Predicted structure and domain organization of rotavirus capping enzyme and innate immune antagonist VP3. J Virol 88:9072–9085. doi: https://doi.org/10.1128/JVI.00923-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Niira K, Ito M, Masuda T, Saitou T, Abe T, Komoto S, Sato M, Yamasato H, Kishimoto M, Naoi (2016) Whole genome sequences of Japanese porcine species C rotaviruses reveal a high diversity of genotypes of individual genes and will contribute to a comprehensive, generally accepted classification system. Infect Genet Evol 44:106–113. doi: https://doi.org/10.1016/j.meegid.2016.06.041

    Article  CAS  PubMed  Google Scholar 

  40. WHO (2013) Rotavirus vaccines WHO position paper: Rotavirus vaccines WHO position paper: January 2013 - Recommendations. Vaccine 31:6170–6171. doi: https://doi.org/10.1016/j.vaccine.2013.05.037

    Article  Google Scholar 

  41. Burki T (2013) Rotavirus vaccine roll-out. Lancet Infect Dis 13:118–119. doi: https://doi.org/10.1016/s1473-3099(13)70019-7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: W. K. Performed the experiments: T. C. T. Data analysis: T. H. N. Contributed reagents, materials, and analysis tools: W. K. Wrote the paper: T. C. T. and W. K.

Corresponding author

Correspondence to Wonyong Kim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This study was performed according to protocols approved by the Human Subjects Institutional Review Board (IRB) of Chung-Ang University Hospital (Protocol number 1710-009-303).

Consent to participate

Written informed consent was obtained from all participants.

Additional information

Handling Editor Tim Skern

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, T.C., Nguyen, T.H. & Kim, W. Multiple reassortment and interspecies transmission events contribute to the diversity of porcine-like human rotavirus C strains detected in South Korea. Arch Virol 167, 2163–2171 (2022). https://doi.org/10.1007/s00705-022-05528-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05528-1

Keywords

Navigation