Skip to main content
Log in

Genomic analysis of a novel active prophage of Hafnia paralvei

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Little is known about the prophages in Hafniaceae bacteria. A novel Hafnia phage, yong2, was induced from Hafnia paralvei by treatment with mitomycin C. The phage has an elliptical head with dimensions of approximately 45 × 38 nm and a long noncontractile tail of approximately 157 × 4 nm. The complete genome of Hafnia phage yong2 is a 39,546-bp double-stranded DNA with a G+C content of 49.9%, containing 59 open reading frames (ORFs) and having at least one fixed terminus (GGGGCAGCGACA). In phylogenetic analysis, Hafnia phage yong2 clustered with four predicted Hafnia prophages and one predicted Enterobacteriaceae prophage. These prophages and members of the family Drexlerviridae together formed two distinct subclades nested within a clade, suggesting the existence of a novel class of prophages with conserved sequences and a unique evolutionary status not yet studied before in Hafniaceae and Enterobacteriaceae bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Huys G, Cnockaert M, Abbott SL, Janda JM, Vandamme P (2010) Hafnia paralvei sp. nov., formerly known as Hafnia alvei hybridization group 2. Int J Syst Evol Microbiol 60:1725–1728. https://doi.org/10.1099/ijs.0.018606-0

    Article  CAS  PubMed  Google Scholar 

  2. Osuka H, Hitomi S, Koganemaru H, Kaneko T (2011) A case of bacteremia caused by Hafnia paralvei. J Infect Chemother 17:855–857. https://doi.org/10.1007/s10156-011-0255-9

    Article  PubMed  Google Scholar 

  3. Janda JM, Abbott SL (2006) The genus Hafnia: from soup to nuts. Clin Microbiol Rev 19:12–18. https://doi.org/10.1128/CMR.19.1.12-28.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Padilla D, Remuzgo-Martínez S, Acosta F, Ramos-Vivas J (2013) Hafnia alvei and Hafnia paralvei taxonomy defined but still far from virulence and pathogenicity. Vet Microbiol 163:200–201. https://doi.org/10.1016/j.vetmic.2012.11.041

    Article  PubMed  Google Scholar 

  5. Stone E, Campbell K, Grant I, McAuliffe O (2019) Understanding and exploiting phage-host interactions. Viruses 11:567. https://doi.org/10.3390/v11060567

    Article  CAS  PubMed Central  Google Scholar 

  6. Filipiak M, Łoś JM, Łoś M (2020) Efficiency of induction of Shiga-toxin lambdoid prophages in Escherichia coli due to oxidative and antibiotic stress depends on the combination of prophage and the bacterial strain. J Appl Genet 61:131–140. https://doi.org/10.1007/s13353-019-00525-8

    Article  CAS  PubMed  Google Scholar 

  7. Chen F, Wang K, Stewart J, Belas R (2006) Induction of multiple prophages from a marine bacterium: a genomic approach. Appl Environ Microbiol 72:4995–5001. https://doi.org/10.1128/AEM.00056-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tian F, Li J, Nazir A, Tong Y (2021) Bacteriophage - A promising alternative measure for bacterial biofilm control. Infect Drug Resist 14:205–217. https://doi.org/10.2147/IDR.S290093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen X, Wei Y, Ji X (2021) Research progress of prophages. Yi Chuan 43:240–248. https://doi.org/10.16288/j.yczz.20-355

    Article  CAS  PubMed  Google Scholar 

  10. Boyd EF, Brüssow H (2002) Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 10:521–529. https://doi.org/10.1016/s0966-842x(02)02459-9

    Article  CAS  PubMed  Google Scholar 

  11. Katharios P, Kalatzis PG, Kokkari C, Pavlidis M, Wang Q (2019) Characterization of a highly virulent Edwardsiella anguillarum strain isolated from greek aquaculture, and a spontaneously induced prophage therein. Front Microbiol 10:141. https://doi.org/10.3389/fmicb.2019.00141

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pan L, Li D, Sun Z, Lin W, Hong B et al (2022) First Characterization of a Hafnia phage reveals extraordinarily large burst size and unusual plaque polymorphism. Front Microbiol 12:754331. https://doi.org/10.3389/fmicb.2021.754331

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pan L, Li D, Tong Y, Lin W, Qin W et al (2022) Induction and genomic analysis of a lysogenic phage of Hafnia paralvei. Curr Microbiol 79:50. https://doi.org/10.1007/s00284-021-02698-0

    Article  CAS  PubMed  Google Scholar 

  14. Zhang X, Wang Y, Li S, An X, Pei G et al (2015) A novel termini analysis theory using HTS data alone for the identification of Enterococcus phage EF4-like genome termini. BMC Genomics 16:414. https://doi.org/10.1186/s12864-015-1612-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:686–689. https://doi.org/10.1093/nar/gki366

    Article  CAS  Google Scholar 

  16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  17. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Potter SC, Luciani A, Eddy SR, Park Y, Lopez R et al (2018) HMMER web server: 2018 update. Nucleic Acids Res 46:200–204. https://doi.org/10.1093/nar/gky448

    Article  CAS  Google Scholar 

  19. Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J et al (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430:2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  20. Arndt D, Marcu A, Liang Y, David SW (2017) PHAST, PHASTER and PHASTEST: Tools for finding prophage in bacterial genomes. Brief Bioinform 20:1560–1567. https://doi.org/10.1093/bib/bbx121

    Article  CAS  PubMed Central  Google Scholar 

  21. Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H et al (2017) ViPTree: the viral proteomic tree server. Bioinformatics 33:2379–2380. https://doi.org/10.1093/bioinformatics/btx157

    Article  CAS  PubMed  Google Scholar 

  22. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. https://doi.org/10.1093/bioinformatics/btr039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48:D517–D525. https://doi.org/10.1093/nar/gkz935

    Article  CAS  PubMed  Google Scholar 

  24. Kleinheinz KA, Joensen KG, Larsen MV (2014) Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage 4:27943. https://doi.org/10.4161/bact.27943

    Article  Google Scholar 

  25. Liu B, Zheng D, Zhou S, Chen L, Yang J (2022) VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res 50:D912–D917. https://doi.org/10.1093/nar/gkab1107

    Article  CAS  PubMed  Google Scholar 

  26. Bao Y, Chetvernin V, Tatusova T (2014) Improvements to pairwise sequence comparison (PASC): a genome-based web tool for virus classification. Arch Virol 159:3293–3304. https://doi.org/10.1007/s00705-014-2197-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moraru C, Varsani A, Kropinski AM (2020) VIRIDIC-A novel tool to calculate the intergenomic similarities of prokaryote-Infecting viruses. Viruses 12:1268. https://doi.org/10.3390/v12111268

    Article  CAS  PubMed Central  Google Scholar 

  28. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57. https://doi.org/10.1093/nar/gkm360

    Article  PubMed  PubMed Central  Google Scholar 

  29. Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform 8:172. https://doi.org/10.1186/1471-2105-8-172

    Article  CAS  Google Scholar 

  30. Roux S, Páez-Espino D, Chen IA, Palaniappan K, Ratner A et al (2021) IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res 49:D764–D775. https://doi.org/10.1093/nar/gkaa946

    Article  CAS  PubMed  Google Scholar 

  31. Maki Y, Yoshida H, Wada A (2000) Two proteins, YfiA and YhbH, associated with resting ribosomes in stationary phase Escherichia coli. Genes Cells 5:965–974. https://doi.org/10.1046/j.1365-2443.2000.00389.x

    Article  CAS  PubMed  Google Scholar 

  32. Díaz-Sáez L, Pankov G, Hunter WN (2017) Open and compressed conformations of Francisella tularensis ClpP. Proteins 85:188–194. https://doi.org/10.1002/prot.25197

    Article  CAS  PubMed  Google Scholar 

  33. Noguchi Y, Katayama T (2016) The Escherichia coli cryptic prophage protein YfdR binds to DnaA and initiation of chromosomal replication is inhibited by overexpression of the gene cluster yfdQ-yfdR-yfdS-yfdT. Front Microbiol 7:239. https://doi.org/10.3389/fmicb.2016.00239

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465. https://doi.org/10.1128/mr.58.3.401-465.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mahdi AA, Sharples GJ, Mandal TN, Lloyd RG (1996) Holliday junction resolvases encoded by homologous rusA genes in Escherichia coli K-12 and phage 82. J Mol Biol 257:561–573. https://doi.org/10.1006/jmbi.1996.0185

    Article  CAS  PubMed  Google Scholar 

  36. Rasmussen KK, Frandsen KE, Boeri Erba E, Pedersen M, Varming AK et al (2016) Structural and dynamics studies of a truncated variant of CI repressor from bacteriophage TP901-1. Sci Rep 6:29574. https://doi.org/10.1038/srep29574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qin W, Li D, Xu L, Lin W, Tong Y (2021) Complete genome analysis of an active prophage of Vibrio alginolyticus. Arch Virol 166:891–896. https://doi.org/10.1007/s00705-020-04941-8

    Article  CAS  PubMed  Google Scholar 

  38. Ndjonka D, Bell CE (2006) Structure of a hyper-cleavable monomeric fragment of phage lambda repressor containing the cleavage site region. J Mol Biol 362:479–489. https://doi.org/10.1016/j.jmb.2006.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rajamanickam K, Hayes S (2018) The bacteriophage lambda CII phenotypes for complementation, cellular toxicity and replication inhibition are suppressed in CII-OOP constructs expressing the small RNA OOP. Viruses 10:115. https://doi.org/10.3390/v10030115

    Article  CAS  PubMed Central  Google Scholar 

  40. Hayes S, Slavcev RA (2005) Polarity within pM and pE promoted phage lambda cI-rexA-rexB transcription and its suppression. Can J Microbiol 51:37–49. https://doi.org/10.1139/w04-115

    Article  CAS  PubMed  Google Scholar 

  41. Kobiler O, Koby S, Teff D, Court D, Oppenheim AB (2002) The phage lambda CII transcriptional activator carries a C-terminal domain signaling for rapid proteolysis. Proc Natl Acad Sci USA 99:14964–14969. https://doi.org/10.1073/pnas.222172499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Erill I, Campoy S, Barbé J (2007) Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 31:637–656. https://doi.org/10.1111/j.1574-6976.2007.00082.x

    Article  CAS  PubMed  Google Scholar 

  43. Fornelos N, Bamford JK, Mahillon J (2011) Phage-borne factors and host LexA regulate the lytic switch in phage GIL01. J Bacteriol 193:6008–6019. https://doi.org/10.1128/JB.05618-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang I, Deaton J, Young R (2003) Sizing the holin lesion with an endolysin-beta-galactosidase fusion. J Bacteriol 185:779–787. https://doi.org/10.1128/JB.185.3.779-787.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Park T, Struck DK, Deaton JF, Young R (2006) Topological dynamics of holins in programmed bacterial lysis. Proc Natl Acad Sci USA 103:19713–19718. https://doi.org/10.1073/pnas.0600943103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fortier LC, Sekulovic O (2013) Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4:354–365. https://doi.org/10.4161/viru.24498

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jebri S, Rahmani F, Hmaied F (2021) Bacteriophages as antibiotic resistance genes carriers in agro-food systems. J Appl Microbiol 130:688–698. https://doi.org/10.1111/jam.14851

    Article  CAS  PubMed  Google Scholar 

  48. Penadés JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP (2015) Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol 23:171–178. https://doi.org/10.1016/j.mib.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  49. Ramos-Vivas J, Elexpuru-Zabaleta M, Samano ML, Barrera AP, Forbes-Hernández TY et al (2021) Phages and enzybiotics in food biopreservation. Molecules 26:5138. https://doi.org/10.3390/molecules26175138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adriaenssens E, Brister JR (2017) How to name and classify your phage: an informal guide. Viruses 9:70. https://doi.org/10.3390/v9040070

    Article  PubMed Central  Google Scholar 

  51. Adriaenssens EM, Sullivan MB, Knezevic P, van Zyl LJ, Sarkar BL et al (2020) Taxonomy of prokaryotic viruses: 2018–2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch Virol 165(5):1253–1260. https://doi.org/10.1007/s00705-020-04577-8

    Article  CAS  PubMed  Google Scholar 

  52. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712. https://doi.org/10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  53. Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71. https://doi.org/10.1038/nature09523

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for high-quality technical support provided by Pingping Zhan of the Electron Microscopy Laboratory of Ningbo University.

Funding

This study was funded by the National Key Research and Development program (2018YFA0903000) and the Open Fund of Key Laboratory of Marine Biogenetic Resources of State Oceanic Administration (HY201602), and sponsored by the K. C. Wong Magna Fund of Ningbo University.

Author information

Authors and Affiliations

Authors

Contributions

Dengfeng Li, Lingting Pan, and Yigang Tong designed the research. Lingting Pan, Dengfeng Li, Wei Lin, Yigang Tong, Wencai Liu, Weinan Qin, and Lihua Xu performed the research. Lingting Pan and Dengfeng Li analyzed data and wrote the paper. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Dengfeng Li or Yigang Tong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: T. K. Frey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

705_2022_5498_MOESM1_ESM.tif

Supplementary Fig. S1 Proteomic tree based on genome-wide similarities determined by tBLASTx for 114 members of the class Caudoviricetes, Hafnia phage yong2, five predicted prophages related to Hafnia phage yong2, and the nine Hafnia phages introduced in the second paragraph. The red star indicates Hafnia phage yong2. The blue stars indicate the nine Hafnia phages. The green stars indicate the five predicted prophages related to Hafnia phage yong2 (TIF 56514 KB)

Supplementary file2 (DOC 87 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Li, D., Lin, W. et al. Genomic analysis of a novel active prophage of Hafnia paralvei. Arch Virol 167, 2027–2034 (2022). https://doi.org/10.1007/s00705-022-05498-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05498-4

Navigation