Skip to main content

Advertisement

Log in

Animal venoms as a source of antiviral peptides active against arboviruses: a systematic review

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Arthropod-borne viruses (arboviruses), such as Zika virus (ZIKV), chikungunya virus (CHIKV), dengue virus (DENV), yellow fever virus (YFV), and West Nile virus (WNV), are pathogens of global importance. Therefore, there has been an increasing need for new drugs for the treatment of these viral infections. In this context, antimicrobial peptides (AMPs) obtained from animal venoms stand out as promising compounds because they exhibit strong antiviral activity against emerging arboviral pathogens. Thus, we systematically searched and critically analyzed in vitro and in vivo studies that evaluated the anti-arbovirus effect of peptide derivatives from toxins produced by vertebrates and invertebrates. Thirteen studies that evaluated the antiviral action of 10 peptides against arboviruses were included in this review. The peptides were derived from the venom of scorpions, spiders, wasps, snakes, sea snails, and frogs and were tested against DENV, ZIKV, YFV, WNV, and CHIKV. Despite the high structural variety of the peptides included in this study, their antiviral activity appears to be associated with the presence of positive charges, an excess of basic amino acids (mainly lysine), and a high isoelectric point (above 8). These peptides use different antiviral mechanisms, the most common of which is the inhibition of viral replication, release, entry, or fusion. Moreover, peptides with virucidal and cytoprotective (pre-treatment) effects were also identified. In conclusion, animal-venom-derived peptides stand out as a promising alternative in the search and development of prototype antivirals against arboviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gould E, Pettersson J, Higgs S et al (2017) Emerging arboviruses: why today? One Health (Amsterdam, Netherlands) 4:1–13. https://doi.org/10.1016/j.onehlt.2017.06.001

    Article  Google Scholar 

  2. Sukhralia S, Verma M, Gopirajan S et al (2018) From dengue to Zika: the wide spread of mosquito-borne arboviruses. Eur J Clin Microbiol Infect Dis. https://doi.org/10.1007/s10096-018-3375-7

    Article  PubMed  Google Scholar 

  3. Grischott F, Puhan M, Hatz C, Schlagenhauf P (2016) Non-vector-borne transmission of Zika virus: a systematic review. Travel Med Infect Dis 14:313–330. https://doi.org/10.1016/j.tmaid.2016.07.002

    Article  PubMed  Google Scholar 

  4. Gubler DJ (2001) Human arbovirus infections worldwide. In: Annals of the New York Academy of Sciences. New York Academy of Sciences, pp 13–24

  5. Organization WH (2009) Dengue: Guidelines for Diagnosis Treatment Prevention and Control (New Edition 2009). World Health Organization, Geneva

    Google Scholar 

  6. Bhatt S, Gething PW, Brady OJ et al (2013) The global distribution and burden of dengue. Nature 496:504–507. https://doi.org/10.1038/nature12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lima WG, Souza NA, Fernandes SOA et al (2019) Serum lipid profile as a predictor of dengue severity: a systematic review and meta-analysis. Rev Med Virol. https://doi.org/10.1002/rmv.2056

    Article  PubMed  Google Scholar 

  8. Godói IP, Lima WG, Comar M et al (2017) Docking and QM/MM studies of NS2B-NS3pro inhibitors: a molecular target against the dengue virus. J Braz Chem Soc 28:895–906. https://doi.org/10.21577/0103-5053.20160242

    Article  CAS  Google Scholar 

  9. Leonel CA, Lima WG, dos Santos M et al (2018) Pharmacophoric characteristics of dengue virus NS2B/NS3pro inhibitors: a systematic review of the most promising compounds. Arch Virol 163:575–586. https://doi.org/10.1007/s00705-017-3641-5

    Article  CAS  PubMed  Google Scholar 

  10. Santos FRS, Nunes DAF, Lima WG et al (2020) Identification of Zika virus NS2B-NS3 protease inhibitors by structure-based virtual screening and drug repurposing approaches. J Chem Inf Model 60:731–737. https://doi.org/10.1021/acs.jcim.9b00933

    Article  CAS  PubMed  Google Scholar 

  11. Santos FRS, Lima WG, Maia EHB et al (2020) Identification of a potential Zika virus inhibitor targeting NS5 methyltransferase using virtual screening and molecular dynamics simulations. J Chem Inf Model 60:562–568. https://doi.org/10.1021/acs.jcim.9b00809

    Article  CAS  PubMed  Google Scholar 

  12. da Mata ÉCG, Mourão CBF, Rangel M, Schwartz EF (2017) Antiviral activity of animal venom peptides and related compounds. J Venom Anim Toxins Incl Trop Dis 23:1–12

    Google Scholar 

  13. El-Seedi H, Abd El-Wahed A, Yosri N et al (2020) Antimicrobial properties of Apis mellifera’s bee venom. Toxins (Basel) 12:451. https://doi.org/10.3390/toxins12070451

    Article  CAS  Google Scholar 

  14. Perumal Samy R, Stiles BG, Franco OL et al (2017) Animal venoms as antimicrobial agents. Biochem Pharmacol 134:127–138

    Article  CAS  Google Scholar 

  15. Primon-Barros M, José Macedo A (2017) Animal venom peptides: potential for new antimicrobial agents. Curr Top Med Chem 17:1119–1156. https://doi.org/10.2174/1568026616666160930151242

    Article  CAS  PubMed  Google Scholar 

  16. Suranse V, Srikanthan A, Sunagar K (2018) Animal venoms: origin, diversity and evolution. Wiley, Chichester

  17. Utkin YN (2015) Animal venom studies: current benefits and future developments. World J Biol Chem 6:28. https://doi.org/10.4331/wjbc.v6.i2.28

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen N, Xu S, Zhang Y, Wang F (2018) Animal protein toxins: origins and therapeutic applications. Biophys Reports 4:233–242. https://doi.org/10.1007/s41048-018-0067-x

    Article  CAS  Google Scholar 

  19. de Lima ME, de Pimenta AMC, Martin-Eauclaire MF et al (2009) Animal toxins: state of the art—perspectives in health and biotechnology. J Venom Anim Toxins Incl Trop Dis 15:585–586. https://doi.org/10.1590/S1678-91992009000300021

    Article  Google Scholar 

  20. Peigneur S, de Lima ME, Tytgat J (2018) Phoneutria nigriventer venom: a pharmacological treasure. Toxicon 151:96–110

    Article  CAS  Google Scholar 

  21. Lima WG, de Brito JCM, Cardoso VN, Fernandes SOA (2021) In-depth characterization of antibacterial activity of melittin against Staphylococcus aureus and use in a model of non-surgical MRSA-infected skin wounds. Eur J Pharm Sci. https://doi.org/10.1016/j.ejps.2020.105592

    Article  PubMed  Google Scholar 

  22. Lima WG, Brito JCM, de Lima ME et al (2021) A short synthetic peptide, based on LyeTx I from Lycosa erythrognatha venom, shows potential to treat pneumonia caused by carbapenem-resistant Acinetobacter baumannii without detectable resistance. J Antibiot (Tokyo). https://doi.org/10.1038/s41429-021-00421-6

    Article  Google Scholar 

  23. Lima WG, Brito JCM, da Cruz Nizer WS (2020) Bee products as a source of promising therapeutic and chemoprophylaxis strategies against COVID-19 (SARS-CoV-2). Phyther Res 35(2):743–750. https://doi.org/10.1002/ptr.6872

    Article  CAS  Google Scholar 

  24. Uddin MB, Lee BH, Nikapitiya C et al (2016) Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J Microbiol 54:853–866. https://doi.org/10.1007/s12275-016-6376-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Santos DM, Verly RM, Piló-Veloso D et al (2010) LyeTx I, a potent antimicrobial peptide from the venom of the spider Lycosa erythrognatha. Amino Acids 39:135–144. https://doi.org/10.1007/s00726-009-0385-x

    Article  CAS  PubMed  Google Scholar 

  26. Fuscaldi LL, de Avelar Júnior JT, dos Santos DM et al (2020) Shortened derivatives from native antimicrobial peptide LyeTx I: in vitro and in vivo biological activity assessment. Exp Biol Med. https://doi.org/10.1177/1535370220966963

    Article  Google Scholar 

  27. Melo-Braga MN, De Marco AF, dos Santos DM et al (2020) Antimicrobial peptides from lycosidae (Sundevall, 1833) spiders. Curr Protein Pept Sci 21:527–541. https://doi.org/10.2174/1389203721666200116091911

    Article  CAS  PubMed  Google Scholar 

  28. Da SCN, Da SFR, Dourado LFN et al (2019) A new topical eye drop containing lyetxi-b, a synthetic peptide designed from a lycosa erithrognata venom toxin, was effective to treat resistant bacterial keratitis. Toxins (Basel). https://doi.org/10.3390/toxins11040203

    Article  Google Scholar 

  29. Kang SJ, Park SJ, Mishig-Ochir T, Lee BJ (2014) Antimicrobial peptides: therapeutic potentials. Expert Rev Anti Infect Ther 12:1477–1486

    Article  CAS  Google Scholar 

  30. Wang G (2020) The Antimicrobial Peptide Database (APD). In: Dep. Pathol. Microbiol. Univ. Nebraska Med. Cent. https://wangapd3.com/contact.php. Accessed 6 Jun 2021

  31. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100. https://doi.org/10.1371/journal.pmed.1000100

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mendes Oliveira VR, Paiva MC, Lima WG (2019) Plasmid-mediated colistin resistance in Latin America and Caribbean: a systematic review. Travel Med Infect Dis. https://doi.org/10.1016/j.tmaid.2019.07.015

    Article  PubMed  Google Scholar 

  33. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  Google Scholar 

  34. Carballar-Lejarazú R, Rodríguez MH, De La Cruz H-H et al (2008) Recombinant scorpine: a multifunctional antimicrobial peptide with activity against different pathogens. Cell Mol Life Sci 65:3081–3092. https://doi.org/10.1007/s00018-008-8250-8

    Article  CAS  PubMed  Google Scholar 

  35. El-Bitar AMH, Sarhan M, Abdel-Rahman MA et al (2020) Smp76, a scorpine-like peptide isolated from the venom of the scorpion scorpio maurus palmatus, with a potent antiviral activity against hepatitis C virus and dengue virus. Int J Pept Res Ther 26:811–821. https://doi.org/10.1007/s10989-019-09888-2

    Article  CAS  PubMed  Google Scholar 

  36. Ji M, Zhu T, Xing M et al (2019) An antiviral peptide from Alopecosa nagpag spider targets NS2B–NS3 protease of flaviviruses. Toxins (Basel) 11:584. https://doi.org/10.3390/toxins11100584

    Article  CAS  Google Scholar 

  37. Ji Z, Li F, Xia Z et al (2018) The scorpion venom peptide Smp76 inhibits viral infection by regulating type-I interferon response. Virol Sin 33:545–556. https://doi.org/10.1007/s12250-018-0068-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li F, Lang Y, Ji Z et al (2019) A scorpion venom peptide Ev37 restricts viral late entry by alkalizing acidic organelles. J Biol Chem 294:182–194. https://doi.org/10.1074/jbc.RA118.005015

    Article  CAS  PubMed  Google Scholar 

  39. Monteiro JMC, Oliveira MD, Dias RS et al (2018) The antimicrobial peptide HS-1 inhibits dengue virus infection. Virology 514:79–87. https://doi.org/10.1016/j.virol.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  40. Rothan HA, Bahrani H, Rahman NA, Yusof R (2014) Identification of natural antimicrobial agents to treat dengue infection: In vitro analysis of latarcin peptide activity against dengue virus. BMC Microbiol. https://doi.org/10.1186/1471-2180-14-140

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rothan HA, Bahrani H, Shankar EM et al (2014) Inhibitory effects of a peptide-fusion protein (Latarcin-PAP1-Thanatin) against chikungunya virus. Antivir Res 108:173–180. https://doi.org/10.1016/j.antiviral.2014.05.019

    Article  CAS  PubMed  Google Scholar 

  42. Sample CJ, Hudak KE, Barefoot BE et al (2013) A mastoparan-derived peptide has broad-spectrum antiviral activity against enveloped viruses. Peptides 48:96–105. https://doi.org/10.1016/j.peptides.2013.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Müller VDM (2011) Avaliação da atividade antiviral de peçonhas de serpentes e escorpião contra os vírus da dengue e da febre amarela. Faculdade de Ciências Farmacêuticas de Ribeirão Preto

  44. Xing M, Ji M, Hu J et al (2020) Snake cathelicidin derived peptide inhibits Zika virus infection. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01871

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xu S, Li H, Shao X et al (2012) Critical effect of peptide cyclization on the potency of peptide inhibitors against dengue virus NS2B-NS3 protease. J Med Chem 55:6881–6887. https://doi.org/10.1021/jm300655h

    Article  CAS  PubMed  Google Scholar 

  46. Santana CJC, Magalhães ACM, Prías-Márquez CA et al (2020) Biological properties of a novel multifunctional host defense peptide from the skin secretion of the chaco tree frog, boana raniceps. Biomolecules. https://doi.org/10.3390/biom10050790

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lee H, Halverson S, Ezinwa N (2018) Mosquito-borne diseases. Prim Care Clin Off Pract 45:393–407. https://doi.org/10.1016/j.pop.2018.05.001

    Article  Google Scholar 

  48. Paixão ES, Teixeira MG, Rodrigues LC (2018) Zika, chikungunya and dengue: the causes and threats of new and reemerging arboviral diseases. BMJ Glob Health 3:e000530. https://doi.org/10.1136/bmjgh-2017-000530

    Article  PubMed  PubMed Central  Google Scholar 

  49. Saez NJ, Senff S, Jensen JE et al (2010) Spider-venom peptides as therapeutics. Toxins (Basel) 2:2851–2871

    Article  CAS  Google Scholar 

  50. Mulder KCL, Lima LA, Miranda VJ et al (2013) Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol 4:321. https://doi.org/10.3389/fmicb.2013.00321

    Article  PubMed  PubMed Central  Google Scholar 

  51. Skalickova S, Heger Z, Krejcova L et al (2015) Perspective of use of antiviral peptides against influenza virus. Viruses 7:5428–5442

    Article  CAS  Google Scholar 

  52. Godói IP, da Rocha Taranto MF, de Lima WG, Alves RJ, Comar Júnior M, Maria J, Ferreira S, Taranto AG (2014) NS2B-NS3pro as a molecular target drugs development against dengue. Biochem Biotechnol Rep 3(2):16–30. https://doi.org/10.5433/2316-52002014v3p2p16

    Article  Google Scholar 

  53. Niyomrattanakit P, Winoyanuwattikun P, Chanprapaph S et al (2004) Identification of residues in the dengue virus type 2 NS2B cofactor that are critical for NS3 protease activation. J Virol 78:13708–13716. https://doi.org/10.1128/jvi.78.24.13708-13716.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Noble CG, Seh CC, Chao AT, Shi PY (2012) Ligand-bound structures of the dengue virus protease reveal the active conformation. J Virol 86:438–446. https://doi.org/10.1128/jvi.06225-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Almaaytah A, Albalas Q (2014) Scorpion venom peptides with no disulfide bridges: a review. Peptides 51:35–45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

W.G.L. and J.M.A are grateful to Coordenação de Aperfeiçoamento de Pessoal do Nível Superior (CAPES) for a Ph.D. fellowship. M.P.R is grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a DTI fellowship. M.E.L. is grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for grants.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the development, analysis, and drafting of this article.

Corresponding author

Correspondence to William Gustavo Lima.

Ethics declarations

Conflict of interest

All authors report that they do not have any conflicts of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Patricia Aguilar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, W.G., Maia, C.Q., de Carvalho, T.S. et al. Animal venoms as a source of antiviral peptides active against arboviruses: a systematic review. Arch Virol 167, 1763–1772 (2022). https://doi.org/10.1007/s00705-022-05494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05494-8

Navigation