Skip to main content

Advertisement

Log in

Genome sequence and experimental infection of calves with bovine gammaherpesvirus 4 (BoHV-4)

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Bovine gammaherpesvirus 4 (BoHV-4) is ubiquitous in cattle worldwide, and it has been detected in animals exhibiting broad clinical presentations. The virus has been detected in the United States since the 1970s; however, its clinical relevance remains unknown. Here, we determined the complete genome sequences of two contemporary BoHV-4 isolates obtained from respiratory (SD16-38) or reproductive (SD16-49) tract specimens and assessed clinical, virological, and pathological outcomes upon intranasal (IN) inoculation of calves with the respiratory BoHV-4 isolate SD16-38. A slight and transient increase in body temperature was observed in BoHV-4-inoculated calves. Additionally, transient viremia and virus shedding in nasal secretions were observed in all inoculated calves. BoHV-4 DNA was detected by nested PCR in the tonsil and regional lymph nodes (LNs) of calves euthanized on day 5 post-inoculation (pi) and in the lungs of calves euthanized on day 10 pi. Calves euthanized on day 35 pi harbored BoHV-4 DNA in the respiratory tract (turbinates, trachea, lungs), regional lymphoid tissues, and trigeminal ganglia. Interestingly, in situ hybridization revealed the presence of BoHV-4 DNA in nerve bundles surrounding the trigeminal ganglia and retropharyngeal lymph nodes (day 35 pi). No histological changes were observed in the respiratory tract (turbinate, trachea, and lung), lymphoid tissues (tonsil, LNs, thymus, and spleen), or central nervous tissues (olfactory bulb and trigeminal ganglia) sampled throughout the animal studies (days 5, 10, and 35 pi). This study contributes to the understanding of the infection dynamics and tissue distribution of BoHV-4 following IN infection in calves. These results suggest that BoHV-4 SD16-38 used in our study has low pathogenicity in calves upon intranasal inoculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The complete genome sequences generated in this study can be found in the GenBank database under accession numbers MN551083 and MN551084.

References

  1. Wellenberg GJ, Van Der Poel WHM, Van Der Vorst TJK et al (2000) Bovine herpesvirus 4 in bovine clinical mastitis. Vet Rec. https://doi.org/10.1136/vr.147.8.222

    Article  PubMed  Google Scholar 

  2. Czaplicki G, Thiry E (1998) An association exists between bovine herpesvirus-4 seropositivity and abortion in cows. Prev Vet Med 33:235–240. https://doi.org/10.1016/S0167-5877(97)00036-6

    Article  CAS  PubMed  Google Scholar 

  3. Chastant-Maillard S (2015) Impact of bovine herpesvirus 4 (BoHV-4) on reproduction. Transbound Emerg Dis 62:245–251. https://doi.org/10.1111/tbed.12155

    Article  CAS  PubMed  Google Scholar 

  4. Deim Z, Szeredi L, Tompó V, Egyed L (2006) Detection of bovine herpesvirus 4 in aborted bovine placentas. Microb Pathog 41:144–148. https://doi.org/10.1016/j.micpath.2006.03.006

    Article  CAS  PubMed  Google Scholar 

  5. Egyed L, Sassi G, Tibold J et al (2011) Symptomless intrauterine transmission of bovine herpesvirus 4 to bovine fetuses. Microb Pathog 50:322–325. https://doi.org/10.1016/j.micpath.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  6. Bartha A, Juhasz M, Liebermann H (1966) Isolation of a bovine herpesvirus from calves with respiratory disease and keratoconjunctivitis. A preliminary report. Acta Vet Acad Sci Hung 16:357–358

    CAS  PubMed  Google Scholar 

  7. Gagnon CA, Traesel CK, Music N et al (2017) Whole genome sequencing of a Canadian bovine gammaherpesvirus 4 strain and the possible link between the viral infection and respiratory and reproductive clinical manifestations in dairy cattle. Front Vet Sci 4:92. https://doi.org/10.3389/fvets.2017.00092

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mohanty SB, Hammond RC, Lillie MG (1971) A new bovine herpesvirus and its effect on experimentally infected calves. Brief report. Arch Gesamte Virusforsch 33:394–395

    Article  CAS  Google Scholar 

  9. Rossiter PB, Gumm ID, Stagg DA et al (1989) Isolation of bovine herpesvirus-3 from African buffaloes (Syncerus caffer). Res Vet Sci 46:337–343

    Article  CAS  Google Scholar 

  10. Moreno-Lopez J, Goltz M, Rehbinder C et al (1989) A bovine herpesvirus (BHV-4) as passenger virus in ethmoidal tumours in Indian cattle. Zentralbl Veterinarmed B 36:481–486

    Article  CAS  Google Scholar 

  11. Ehlers B, Buhk HJ, Ludwig H (1985) Analysis of bovine cytomegalovirus genome structure: cloning and mapping of the monomeric polyrepetitive DNA unit, and comparison of European and American strains. J Gen Virol 66(Pt 1):55–68. https://doi.org/10.1099/0022-1317-66-1-55

    Article  CAS  PubMed  Google Scholar 

  12. Kit S, Kit M, Ichimura H et al (1986) Induction of thymidine kinase activity by viruses with group B DNA genomes: bovine cytomegalovirus (bovine herpesvirus 4). Virus Res 4:197–212

    Article  CAS  Google Scholar 

  13. ICTV (2018) Virus Taxonomy: 2018 Release. Washington, DC

  14. Zimmermann W, Broll H, Ehlers B et al (2001) Genome sequence of bovine herpesvirus 4, a bovine Rhadinovirus, and identification of an origin of DNA replication. J Virol 75:1186–1194. https://doi.org/10.1128/JVI.75.3.1186-1194.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thiry E, Bublot M, Dubuisson J et al (1992) Molecular biology of bovine herpesvirus type 4. Vet Microbiol 33:79–92. https://doi.org/10.1016/0378-1135(92)90037-T

    Article  CAS  PubMed  Google Scholar 

  16. Verna AE, Manrique JM, Pérez SE et al (2012) Genomic analysis of bovine herpesvirus type 4 (BoHV-4) from Argentina: High genetic variability and novel phylogenetic groups. Vet Microbiol 160:1–8. https://doi.org/10.1016/j.vetmic.2012.04.039

    Article  CAS  PubMed  Google Scholar 

  17. Dewals B, Thirion M, Markine-Goriaynoff N et al (2006) Evolution of Bovine herpesvirus 4: recombination and transmission between African buffalo and cattle. J Gen Virol 87:1509–1519. https://doi.org/10.1099/vir.0.81757-0

    Article  CAS  PubMed  Google Scholar 

  18. Wellenberg GJ, Bruschke CJM, Wisselink HJ et al (2002) Simultaneous intramammary and intranasal inoculation of lactating cows with bovine herpesvirus 4 induce subclinical mastitis. Vet Microbiol 86:115–129. https://doi.org/10.1016/S0378-1135(01)00496-5

    Article  CAS  PubMed  Google Scholar 

  19. Thiry E, Dubuisson J, Bublot M et al (1990) The biology of bovine herpesvirus-4 infection of cattle. Dtsch Tierarztl Wochenschr 97:72–77

    CAS  PubMed  Google Scholar 

  20. Egyed L, Ballagi-Pordány A, Bartha A, Belák S (1996) Studies of in vivo distribution of bovine herpesvirus type 4 in the natural host. J Clin Microbiol 35:1091–1095

    Article  Google Scholar 

  21. Egyed L (2000) Bovine herpesvirus type 4: a special herpesvirus (review article). Acta Vet Hung 48:501–513. https://doi.org/10.1556/004.48.2000.4.13

    Article  CAS  PubMed  Google Scholar 

  22. Dubuisson J, Thiry E, Bublot M et al (1989) Experimental infection of bulls with a genital isolate of bovine herpesvirus-4 and reactivation of latent virus with dexamethasone. Vet Microbiol 21:97–114

    Article  CAS  Google Scholar 

  23. Osorio FA, Rock DL, Reed DE (1985) Studies on the pathogenesis of a bovine cytomegalo-like virus in an experimental host. J Gen Virol 66:1941–1951. https://doi.org/10.1099/0022-1317-66-9-1941

    Article  PubMed  Google Scholar 

  24. Egyed L, Bartha A (1998) PCR studies on the potential sites for latency of BHV-4 in calves. Vet Res Commun 22:209–216

    Article  CAS  Google Scholar 

  25. Osorio FA, Reed DE (1983) Experimental inoculation of cattle with bovine herpesvirus-4: evidence for a lymphoid-associated persistent infection. Am J Vet Res 44:975–980

    CAS  PubMed  Google Scholar 

  26. Castrucci G, Frigeri F, Ferrari M et al (1987) Experimental infection of calves with strains of Bovid herpesvirus-4. Comp Immunol Microbiol Infect Dis. https://doi.org/10.1016/0147-9571(87)90039-7

    Article  PubMed  Google Scholar 

  27. Castrucci G, Frigeri F, Ferrari M, et al (1987) Reactivation in calves of latent infection by Bovid herpesvirus-4. Microbiologica

  28. Boisvert S, Raymond F, Godzaridis É et al (2012) Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol 13:R122. https://doi.org/10.1186/gb-2012-13-12-r122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Myers EW (2000) A whole-genome assembly of Drosophila. Science (80-) 287:2196–2204. https://doi.org/10.1126/science.287.5461.2196

    Article  CAS  Google Scholar 

  30. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877. https://doi.org/10.1101/gr.9.9.868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Falkenberg SM, Ridpath J, Vander Ley B et al (2014) Comparison of temperature fluctuations at multiple anatomical locations in cattle during exposure to bovine viral diarrhea virus. Livest Sci 164:159–167. https://doi.org/10.1016/j.livsci.2014.03.018

    Article  Google Scholar 

  32. Storz J (1968) Comments on malignant catarrhal fever. J Am Vet Med Assoc 152:804–806

    Google Scholar 

  33. Areda D, Chigerwe M, Crossley B (2018) Bovine herpes virus type-4 infection among postpartum dairy cows in California: risk factors and phylogenetic analysis. Epidemiol Infect 146:904–912. https://doi.org/10.1017/S0950268818000791

    Article  CAS  PubMed  Google Scholar 

  34. Morán P, Pérez S, Odeón A, Verna A (2019) Comparative analysis of replicative properties of phylogenetically divergent, Argentinean BoHV-4 strains in cell lines from different origins. Comp Immunol Microbiol Infect Dis 63:97–103. https://doi.org/10.1016/J.CIMID.2019.01.014

    Article  PubMed  Google Scholar 

  35. Delooz L, Czaplicki G, Houtain JY et al (2017) Laboratory findings suggesting an association between BoHV-4 and bovine abortions in Southern Belgium. Transbound Emerg Dis 64:1100–1109. https://doi.org/10.1111/tbed.12469

    Article  CAS  PubMed  Google Scholar 

  36. Szenci O, Sassi G, Fodor L et al (2016) Co-infection with Bovine Herpesvirus 4 and Histophilus somni significantly extends the service period in dairy cattle with purulent vaginal discharge. Reprod Domest Anim 51:143–149. https://doi.org/10.1111/RDA.12658

    Article  CAS  PubMed  Google Scholar 

  37. Homan EJ, Easterday BC (1981) Further studies of naturally occurring latent bovine herpesvirus infection. Am J Vet Res 42:1811–1813

    CAS  PubMed  Google Scholar 

  38. Campos FS, Franco AC, Oliveira MT et al (2014) Detection of bovine herpesvirus 2 and bovine herpesvirus 4 DNA in trigeminal ganglia of naturally infected cattle by polymerase chain reaction. Vet Microbiol 171:182–188. https://doi.org/10.1016/J.VETMIC.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  39. Romeo F, Spetter MJ, Moran P et al (2019) Analysis of the transcripts encoding for antigenic proteins of bovine gammaherpesvirus 4. J Vet Sci. https://doi.org/10.4142/JVS.2020.21.E5

    Article  PubMed Central  Google Scholar 

  40. Machiels B, Stevenson PG, Vanderplasschen A, Gillet L (2013) A gammaherpesvirus uses alternative splicing to regulate its tropism and its sensitivity to neutralization. PLOS Pathog 9:e1003753. https://doi.org/10.1371/JOURNAL.PPAT.1003753

    Article  PubMed  PubMed Central  Google Scholar 

  41. Williams LBA, Fry LM, Herndon DR et al (2019) A recombinant bovine herpesvirus-4 vectored vaccine delivered via intranasal nebulization elicits viral neutralizing antibody titers in cattle. PLoS ONE 14:e0215605. https://doi.org/10.1371/journal.pone.0215605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the NADC animal facility staff and animal caretakers for the care and handling of the animals.

Funding

This work was supported by the United States Department of Agriculture (USDA) National Institute of Food and Agriculture, Hatch Projects (SD00H517-14 and NYC-2020-21-229) and AFRI Foundational and Applied Science Program (grant no. 2017-67015-32034/project accession no. NYCV478904). Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the NIFA or the USDA.

Author information

Authors and Affiliations

Authors

Contributions

Conceived the study: SFM, EFF, DGD. Tested experimental samples: FVB, SMF, MM, RPD, SS, MVP, AB, AM. Data analysis and result interpretation: FVB, SMF, MM, JDN, JFR, MVP, EFF, DGD. Manuscript writing: FVB, SMF, MM, EFF, DGD. All authors have reviewed and edited the manuscript.

Corresponding author

Correspondence to Diego G. Diel.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

All animals were handled in accordance with the Animal Welfare Act Amendments (7 U.S. Code §2131 to §2156), and all study procedures were reviewed and approved by the Institutional Animal Care and Use Committee at the National Animal Disease Center (ARS-2016-572) or by the Ethical Committee at UFSM (CEUA/UFSM protocol number 034/2014).

Additional information

Handling Editor: Ana Cristina Bratanich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauermann, F.V., Falkenberg, S.M., Martins, M. et al. Genome sequence and experimental infection of calves with bovine gammaherpesvirus 4 (BoHV-4). Arch Virol 167, 1659–1668 (2022). https://doi.org/10.1007/s00705-022-05486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05486-8

Navigation