Skip to main content
Log in

Salmonella phage akira, infecting selected Salmonella enterica Enteritidis and Typhimurium strains, represents a new lineage of bacteriophages

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Some serovars of Salmonella can cause life-threatening diarrhoeal diseases and bacteriemia. The emergence of multidrug-resistant strains has led to a need for alternative treatments such as phage therapy, which requires available, well-described, diverse, and suitable phages. Phage akira was found to lyse 19 out of 32 Salmonella enterica serovars and farm isolates tested, although plaque formation was observed with only two S. Enteritidis and one S. Typhimurium strain. Phage akira encodes anti-defence genes against type 1 R-M systems, is distinct (<65% nucleotide sequence identity) from related phages and has siphovirus morphology. We propose that akira represents a new genus in the class Caudoviricetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Availability of data and material

The genome sequence of Salmonella phage akira is available in the GenBank database under the accession number NC_054647.1. All data generated or analysed during this study are included in this published article and its supplementary files.

References

  1. World health Organization (WHO) (2008) Salmonella (non-typhoidal). https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal). Accessed 6 Sep 2021

  2. Middleton D, Savage R, Tighe MK et al (2014) Risk factors for sporadic domestically acquired Salmonella serovar Enteritidis infections: a case-control study in Ontario, Canada, 2011. Epidemiol Infect 142:1411–1421. https://doi.org/10.1017/S0950268813001945

    Article  CAS  PubMed  Google Scholar 

  3. Much P, Pichler J, Kasper S et al (2009) A foodborne outbreak of Salmonella enteritidis phage type 6 in Austria, 2008. Wien Klin Wochenschr 121:132–136. https://doi.org/10.1007/s00508-008-1134-y

    Article  PubMed  Google Scholar 

  4. European Food Safety Authority (2021) The European Union One Health 2019 Zoonoses Report

  5. Shrivastava SR, Shrivastava PS, Ramasamy J (2018) World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. JMS - J Med Soc 32:76–77. https://doi.org/10.4103/jms.jms_25_17

    Article  Google Scholar 

  6. Koutsoumanis K, Allende A, Álvarez-Ordóñez A, et al (2021) Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain

  7. Khatami A, Lin RCY, Petrovic-Fabijan A et al (2021) Bacterial lysis, autophagy and innate immune responses during adjunctive phage therapy in a child. EMBO Mol Med 13:e13936. https://doi.org/10.15252/emmm.202113936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hatfull GF, Dedrick RM, Schooley RT (2022) Phage therapy for antibiotic-resistant bacterial infections. Annu Rev Med. https://doi.org/10.1146/annurev-med-080219-122208

    Article  PubMed  Google Scholar 

  9. Kwiatek M, Parasion S, Nakonieczna A (2020) Therapeutic bacteriophages as a rescue treatment for drug-resistant infections—an in vivo studies overview. J Appl Microbiol 128:985–1002. https://doi.org/10.1111/jam.14535

    Article  CAS  PubMed  Google Scholar 

  10. Capparelli R, Nocerino N, Lannaccone M et al (2010) Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. J Infect Dis 201:52–61. https://doi.org/10.1086/648478

    Article  CAS  PubMed  Google Scholar 

  11. Cook R, Brown N, Redgwell T et al (2021) INfrastructure for a PHAge REference database: identification of large-scale biases in the current collection of cultured phage genomes. Phage 2:214–223. https://doi.org/10.1089/phage.2021.0007

    Article  Google Scholar 

  12. Turner D, Kropinski AM, Adriaenssens EM (2021) A roadmap for genome-based phage taxonomy. Viruses. https://doi.org/10.3390/v13030506

    Article  PubMed  PubMed Central  Google Scholar 

  13. Olsen NS, Hendriksen NB, Hansen LH, Kot W (2020) A New High-throughput Screening (HiTS) Method for Phages—enabling crude isolation and fast identification of diverse phages with therapeutic potential. PHAGE. https://doi.org/10.1101/2020.03.27.011080

    Article  Google Scholar 

  14. Brettin T, Davis JJ, Disz T et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. https://doi.org/10.1038/srep08365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. 29:2607–2618. https://doi.org/10.1093/nar/29.12.2607

    Article  CAS  Google Scholar 

  16. Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  17. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  18. Hildebrand A, Remmert M, Biegert A, Söding J (2009) Fast and accurate automatic structure prediction with HHpred. Proteins Struct Funct Bioinf 77:128–132. https://doi.org/10.1002/prot.22499

    Article  CAS  Google Scholar 

  19. Zankari E, Hasman H, Cosentino S et al (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. https://doi.org/10.1093/jac/dks261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meier-Kolthoff JP, Göker M (2017) VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 33:3396–3404. https://doi.org/10.1093/bioinformatics/btx440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moraru C, Varsani A, Kropinski AM (2020) VIRIDIC—a novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 12:1268. https://doi.org/10.3390/v12111268

    Article  CAS  PubMed Central  Google Scholar 

  22. Gilchrist CLM, Chooi Y-H (2021) clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37:2473–2475. https://doi.org/10.1093/bioinformatics/btab007

    Article  CAS  Google Scholar 

  23. Letarov A V., Kulikov EE (2018) Determination of the bacteriophage host range: Culture-Based approach. In: Methods in Molecular Biology. Humana Press Inc., pp 75–84

  24. Zhang R, Mirdita M, Levy Karin E et al (2021) SpacePHARER: sensitive identification of phages from CRISPR spacers in prokaryotic hosts. Bioinformatics. https://doi.org/10.1093/bioinformatics/btab222

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dion MB, Plante PL, Zufferey E et al (2021) Streamlining CRISPR spacer-based bacterial host predictions to decipher the viral dark matter. Nucleic Acids Res 49:3127–3138. https://doi.org/10.1093/nar/gkab133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press

    Google Scholar 

  27. Sullivan M (2016) Cesium chloride dialysis for viruses. https://doi.org/10.17504/protocols.io.c7jzkm

  28. Lavelle K, Martinez I, Neve H et al (2018) Biodiversity of streptococcus thermophilus phages in global dairy fermentations. Viruses 10:577. https://doi.org/10.3390/v10100577

    Article  CAS  PubMed Central  Google Scholar 

  29. Carstens AB, Kot W, Lametsch R et al (2016) Characterisation of a novel enterobacteria phage, CAjan, isolated from rat faeces. Arch Virol 161:2219–2226. https://doi.org/10.1007/s00705-016-2901-0

    Article  CAS  PubMed  Google Scholar 

  30. King G, Murray NE (1995) Restriction alleviation and modification enhancement by the Rac prophage of Escherichia coli K-12. Mol Microbiol 16:769–777. https://doi.org/10.1111/j.1365-2958.1995.tb02438.x

    Article  CAS  PubMed  Google Scholar 

  31. Lu MJ, Henning U (1989) The immunity (imm) gene of Escherichia coli bacteriophage T4. J Virol 63:3472–3478. https://doi.org/10.1128/jvi.63.8.3472-3478.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sui B, Qi X, Wang X et al (2021) Characterization of a novel bacteriophage swi2 harboring two lysins can naturally lyse Escherichia coli. Front Microbiol 12:1201. https://doi.org/10.3389/fmicb.2021.670799

    Article  Google Scholar 

  33. Rohren M, Xie Y, O’Leary C et al (2019) Complete genome sequence of Salmonella enterica Serovar Typhimurium Siphophage Skate. Microbiol Resour Announc 8:e00541-e619. https://doi.org/10.1128/mra.00541-19

    Article  PubMed  PubMed Central  Google Scholar 

  34. Choi IY, Lee C, Song WK et al (2019) Lytic KFS-SE2 phage as a novel bio-receptor for Salmonella enteritidis detection. J Microbiol 57:170–179

    Article  CAS  Google Scholar 

  35. Huang C, Shi J, Ma W et al (2018) Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Res Int 111:631–641. https://doi.org/10.1016/j.foodres.2018.05.071

    Article  CAS  PubMed  Google Scholar 

  36. Doore SM, Schrad JR, Dean WF et al (2018) Shigella phages isolated during a dysentery outbreak reveal uncommon structures and broad species Diversity. J Virol. https://doi.org/10.1128/jvi.02117-17

    Article  PubMed  PubMed Central  Google Scholar 

  37. Turner D, Adriaenssens EM, Tolstoy I, Kropinski AM (2021) Phage annotation guide: guidelines for assembly and high-quality annotation. Phage 2:170–182. https://doi.org/10.1089/phage.2021.0013

    Article  PubMed  Google Scholar 

  38. Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19:7–15

    Article  CAS  Google Scholar 

  39. Goodrich-Blair H, Shub DA (1996) Beyond homing: competition between intron endonucleases confers a selective advantage on flanking genetic markers. Cell 84:211–221. https://doi.org/10.1016/S0092-8674(00)80976-9

    Article  CAS  PubMed  Google Scholar 

  40. Kala S, Cumby N, Sadowski PD et al (2014) HNH proteins are a widespread component of phage DNA packaging machines. Proc Natl Acad Sci USA 111:6022–6027. https://doi.org/10.1073/pnas.1320952111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hampton HG, Watson BNJ, Fineran PC (2020) The arms race between bacteria and their phage foes. Nature 577:327–336. https://doi.org/10.1038/s41586-019-1894-8

    Article  CAS  PubMed  Google Scholar 

  42. Abedon ST (2011) Lysis from without. Bacteriophage 1:46–49. https://doi.org/10.4161/bact.1.1.13980

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu Y, Mi L, Mi Z et al (2016) Complete genome sequence of IME207, a novel bacteriophage which can lyse multidrug-resistant Klebsiella pneumoniae and Salmonella. Genome Announc 4:2015–2016. https://doi.org/10.1128/genomeA.01015-16

    Article  Google Scholar 

  44. Guo Y, Li J, Islam MS et al (2021) Application of a novel phage vB_SalS-LPSTLL for the biological control of Salmonella in foods. Food Res Int 147:110492. https://doi.org/10.1016/j.foodres.2021.110492

    Article  CAS  PubMed  Google Scholar 

  45. Anwar MZ, Zervas A, Hansen LH et al (2020) Complete genome and plasmid sequences of Salmonella enterica subsp. enterica Serovar Enteritidis PT1, obtained from the Salmonella Reference Laboratory at Public Health England, Colindale, United Kingdom. Microbiol Resour Announc. https://doi.org/10.1128/mra.01064-19

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Herning Vand (DANVA) for the wastewater sample, the Danish Veterinary and Food Administration for providing the Salmonella strains, and Laura Forero-Junco (KU, DK) for help with SpacePHARER.

Funding

This research was funded by Villum Experiment Grant 17595, Aarhus University Research Foundation AUFF Grant E-2015-FLS-7-28 (Witold Kot), and Human Frontier Science Program Grant RGP0024/2018 (Lars H. Hansen).

Author information

Authors and Affiliations

Authors

Contributions

NSO, LHH, and WK contributed to the study conception and design. Material preparation, data collection, and analysis were performed by NSO, RL, and NW. The first draft of the manuscript was written by NSO, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nikoline S. Olsen or Witold Kot.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Handling Editor: Johannes Wittmann .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2715 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olsen, N.S., Lametsch, R., Wagner, N. et al. Salmonella phage akira, infecting selected Salmonella enterica Enteritidis and Typhimurium strains, represents a new lineage of bacteriophages. Arch Virol 167, 2049–2056 (2022). https://doi.org/10.1007/s00705-022-05477-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05477-9

Navigation