Skip to main content

Advertisement

Log in

Characterization and genome analysis of Pseudomonas aeruginosa phage vB_PaeP_Lx18 and the antibacterial activity of its lysozyme

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A lytic Pseudomonas aeruginosa phage, vB_PaeP_Lx18 (Lx18), was isolated from the sewage of a dairy farm. Biological characterization revealed that Lx18 was stable from 40 °C to 60 °C and over a wide range of pH values from 4 to 10. It was able to lyse 63.6% (21/33) of the P. aeruginosa strains tested and was able to reduce and disperse biofilms, with a biofilm reduction rate of 76.8%. Whole-genome sequencing showed that Lx18 is a dsDNA virus with a genome of 42,735 bp and G+C content of 62.16%. The genome contains 54 open reading frames (ORFs), 28 of which have known functions, including DNA replication and modification, transcriptional regulation, structural and packaging proteins, and host cell lysis. No virulence or tRNA genes were identified. Phylogenetic analysis showed that phage Lx18 belongs to the genus Phikmvvirus. The lysozyme of Lx18, Lys18, was cloned and expressed. The combined action of Lys18 and ethylenediaminetetraacetic acid (EDTA) had antibacterial activity against Pseudomonas aeruginosa. The study of phage Lx18 and its lysozyme will provide basic information for further research on the treatment of Pseudomonas aeruginosa infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ceyssens PJ, Lavigne R (2010) Bacteriophages of Pseudomonas. Future Microbiol 5:1041–1055

    Article  PubMed  Google Scholar 

  2. Hilker R, Munder A, Klockgether J, Losada PM, Chouvarine P, Cramer N, Davenport CF, Dethlefsen S, Fischer S, Peng H, Schönfelder T, Türk O, Wiehlmann L, Wölbeling F, Gulbins E, Goesmann A, Tümmler B (2015) Interclonal gradient of virulence in the Pseudomonas aeruginosa pangenome from disease and environment. Environ Microbiol 17:29–46

    Article  CAS  PubMed  Google Scholar 

  3. Martins SAM, Martins VC, Cardoso FA, Germano J, Rodrigues M, Duarte C, Bexiga R, Cardoso S, Freitas PP (2019) Biosensors for on-farm diagnosis of mastitis. Front Bioeng Biotechnol 7:186

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meng L, Zhang Y, Liu H, Zhao S, Wang J, Zheng N (2017) Characterization of Pseudomonas spp. and associated proteolytic properties in raw milk stored at low temperatures. Front Microbiol 8:2158

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schauer B, Wald R, Urbantke V, Loncaric I, Baumgartner M (2021) Tracing mastitis pathogens-epidemiological investigations of a Pseudomonas aeruginosa Mastitis outbreak in an Austrian Dairy Herd. Animals (Basel) 11(2):279

    Article  Google Scholar 

  6. Subedi D, Vijay AK, Willcox M (2018) Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. Clin Exp Optom 101(2):162–171

    Article  PubMed  Google Scholar 

  7. Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zahedi Bialvaei A, Rahbar M, Hamidi-Farahani R, Asgari A, Esmailkhani A, Mardani Dashti Y, Soleiman-Meigooni S (2021) Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microb Pathog 153:104789

    Article  CAS  PubMed  Google Scholar 

  9. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37(1):177–192

    Article  CAS  PubMed  Google Scholar 

  10. Roy R, Tiwari M, Donelli G, Tiwari V, Tiwari V (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9(1):522–554

    Article  CAS  PubMed  Google Scholar 

  11. Bassetti M, Vena A, Croxatto A, Righi E, Guery B (2018) How to manage Pseudomonas aeruginosa infections. Drugs Context 7:212527

    Article  PubMed  PubMed Central  Google Scholar 

  12. Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284

    Article  CAS  PubMed  Google Scholar 

  13. Huff WE, Huff GR, Rath NC, Balog JM, Donoghue AM (2005) Alternatives to antibiotics: utilization of bacteriophage to treat colibacillosis and prevent foodborne pathogens. Poult Sci 84(4):655–659

    Article  CAS  PubMed  Google Scholar 

  14. Alves DR, Perez-Esteban P, Kot W, Bean JE, Arnot T, Hansen LH, Enright MC, Jenkins AT (2016) A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb Biotechnol 9(1):61–74

    Article  CAS  PubMed  Google Scholar 

  15. Pires DP, Vilas Boas D, Sillankorva S, Azeredo J (2015) Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections. J Virol 89:7449–7456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Young R (2014) Phage lysis: three steps, three choices, one outcome. J Microbiol 52:243–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oliveira H, Thiagarajan V, Walmagh M, Sillankorva S, Lavigne R, Neves-Petersen MT, Kluskens LD, Azeredo J (2014) A thermostable Salmonella phage endolysin, Lys68 with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PLoS ONE 9(10):e108376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Azeredo J, Sillankorva S, Pires DP (2014) Pseudomonas bacteriophage isolation and production. Methods Mol Biol 1149:23–32

    Article  CAS  PubMed  Google Scholar 

  19. Ackermann HW (2009) Basic phage electron microscopy. Methods Mol Biol 501:113–126

    Article  CAS  PubMed  Google Scholar 

  20. Zhou W, Feng Y, Zong Z (2018) Two new lytic bacteriophages of the myoviridae family against carbapenem-resistant Aci netobacter baumannii. Front Microbiol 9:850

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang Z, Liu X, Shi Y, Yin S, Shen W, Chen J, Chen Y, Chen Y, You B, Gong Y, Luo X, Zhang C, Yuan Z, Peng Y (2019) Characterization and genome annotation of a newly detected bacteriophage infecting multidrug-resistant Acinetobacter baumannii. Adv Virol 164(6):1527–1533

    CAS  Google Scholar 

  22. Tang C, Deng C, Zhang Y, Xiao C, Wang J, Rao X, Hu F, Lu S (2018) Characterization and genomic analyses of Pseudomonas aeruginosa podovirus TC6: establishment of genus Pa11virus. Front Microbiol 9:2561

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75

    Article  CAS  Google Scholar 

  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evolut 33(7):1870–1874

    Article  CAS  Google Scholar 

  25. Wu M, Hu K, Xie Y, Liu Y, Mu D, Guo H, Zhang Z, Zhang Y, Chang D, Shi Y (2019) A novel phage PD-6A3, and its endolysin Ply6A3, with extended lytic activity against Acinetobacter baumannii. Front Microbiol 9:3302

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guo M, Feng C, Ren J, Zhuang X, Zhang Y, Zhu Y, Dong K, He P, Guo X, Qin J (2017) A Novel Antimicrobial Endolysin, LysPA26, against Pseudomonas aeruginosa. Front Microbiol 8:293

    PubMed  PubMed Central  Google Scholar 

  27. Han H, Li X, Zhang T, Wang X, Zou J, Zhang C, Tang H, Zou Y, Cheng B, Wang R (2019) Bioinformatic analyses of a potential Salmonella-virus-FelixO1 biocontrol phage BPS15S6 and the characterisation and anti-Enterobacteriaceae-pathogen activity of its endolysin LyS15S6. Antonie Van Leeuwenhoek 112(11):1577–1592

    Article  CAS  PubMed  Google Scholar 

  28. Zhang C, Wang Y, Sun H, Ren H (2015) Multiple-site mutations of phage Bp7 endolysin improves its activities against target bacteria. Virol Sin 30(5):386–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kropinski AM, Prangishvili D, Lavigne R (2009) Position paper: the creation of a rational scheme for the nomenclature of viruses of Bacteria and Archaea. Environ Microbiol 11(11):2775–2777

    Article  PubMed  Google Scholar 

  30. Yang Y, Lu S, Shen W, Zhao X, Shen M, Tan Y, Li G, Li M, Wang J, Hu F, Le S (2016) Characterization of the first double-stranded RNA bacteriophage infecting Pseudomonas aeruginosa. Sci Rep 6:38795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB (2018) Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucl Acids Res 46:D708–D717

    Article  CAS  PubMed  Google Scholar 

  32. Bachta KER, Allen JP, Cheung BH, Chiu CH, Hauser AR (2020) Systemic infection facilitates transmission of Pseudomonas aeruginosa in mice. Nat Commun 11(1):543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klaas IC, Zadoks RN (2018) An update on environmental mastitis: challenging perceptions. Transbound Emerg Dis 65(Suppl 1):166–185

    Article  PubMed  Google Scholar 

  34. Lin DM, Koskella B, Lin HC (2017) Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 8(3):162–173

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang Z, Xue Y, Gao Y, Guo M, Liu Y, Zou X, Cheng Y, Ma J, Wang H, Sun J, Yan Y (2021) Phage vB_PaeS-PAJD-1 Rescues Murine Mastitis Infected With Multidrug-Resistant Pseudomonas aeruginosa. Front Cell Infect Microbiol 11:689770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu Y, Wang R, Xu M et al (2019) A novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation. Front Microbiol 10:2768

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lavigne R, Burkal’tseva MV, Robben J, Sykilinda NN, Kurochkina LP, Grymonprez B, Jonckx B, Krylov VN, Mesyanzhinov VV, Volckaert G (2003) The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312(1):49–59

    Article  CAS  PubMed  Google Scholar 

  38. Cao Z, Zhang J, Niu YD, Cui N, Ma Y, Cao F, Jin L, Li Z, Xu Y (2015) Isolation and characterization of a “phiKMV-like” bacteriophage and its therapeutic effect on mink hemorrhagic pneumonia. PLoS ONE 10(1):e0116571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lavigne R, Briers Y, Hertveldt K, Robben J, Volckaert G (2004) Identification and characterization of a highly thermostable bacteriophage lysozyme. Cell Mol Life Sci 61(21):2753–2759

    Article  CAS  PubMed  Google Scholar 

  40. Schneider CL (2017) Bacteriophage-mediated horizontal gene transfer: transduction. Bacteriophages 9:1–42

    Google Scholar 

  41. Shi Y, Yan Y, Ji W, Du B, Meng X, Wang H, Sun J (2012) Characterization and determination of holin protein of Streptococcus suis bacteriophage SMP in heterologous host. Virol J 22(9):70

    Article  CAS  Google Scholar 

  42. Ghose C, Euler CW (2020) Gram-negative bacterial lysins. Antibiotics (Basel). 9(2):74

    Article  CAS  PubMed Central  Google Scholar 

  43. Lai WCB, Chen X, Ho MKY, Xia J, Leung SSY (2020) Bacteriophage-derived endolysins to target gram-negative bacteria. Int J Pharm 15(589):119833

    Article  CAS  Google Scholar 

  44. Larpin Y, Oechslin F, Moreillon P, Resch G, Entenza JM, Mancini S (2018) In vitro characterization of PlyE146, a novel phage lysin that targets Gram-negative bacteria. PLoS ONE 13(2):e0192507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr Zongzhu Liu for collecting samples for the experiments, and we thank the staff of the Central Lab of Qingdao Agricultural University for their assistance with TEM.

Funding

This study was supported by Shandong Province modern agricultural industrial technology system cattle industry innovation team project (No. SDAIT-09-03).

Author information

Authors and Affiliations

Authors

Contributions

WL conceived and designed the experiments and critically evaluated the manuscript. YY carried out the data analysis and wrote the manuscript. XW and ZM carried out the experiments. HR evaluated the experimental design and helped with experiments and the revision of manuscript. CZ evaluated the experimental design and gave advice about the manuscript. LZ provided reagents and instruments. HL provided financial support for the experiments. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Huanqi Liu or Wenhua Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Additional information

Handling Editor: T. K. Frey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 161 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Wang, X., Mou, Z. et al. Characterization and genome analysis of Pseudomonas aeruginosa phage vB_PaeP_Lx18 and the antibacterial activity of its lysozyme. Arch Virol 167, 1805–1817 (2022). https://doi.org/10.1007/s00705-022-05472-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05472-0

Navigation