Skip to main content

Advertisement

Log in

Inhibitory activity and mechanism of silver nanoparticles against herpes simplex virus type 1

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

A Correction to this article was published on 08 August 2022

This article has been updated

Abstract

Herpes simplex virus type 1 (HSV-1) is a common pathogen that infects 50–90% of the world’s population and causes a variety of diseases, some of which can be life-threatening. Silver nanoparticles (AgNPs) have been shown to have broad-spectrum antiviral activity. In this study, we investigated the activity of AgNPs against HSV-1 and found that AgNPs effectively inhibited plaque formation and HSV-1 progeny production, reduced the genomic load, and interfered with HSV-1 mRNA expression and protein synthesis. Transmission electron microscopy showed that AgNPs interacted with HSV-1 and altered the shape of the viral particles. Furthermore, AgNPs affected the entry of HSV-1 into cells as well as their release and cell-to-cell spread. AgNPs were also found to downregulate the expression of pro-inflammatory cytokines upon HSV-1 infection. Combined treatment with AgNPs and acyclovir (ACV) confirmed that AgNPs significantly enhanced the inhibitory effect of ACV against HSV-1. Our findings may contribute to an understanding of the mechanism of the antiviral effect of AgNPs against HSV-1 and help to provide a theoretical basis for their clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Man A, Slevin M, Petcu E, Fraefel C (2019) The cyclin-dependent kinase 5 inhibitor peptide inhibits herpes simplex virus type 1 replication. Sci Rep 9:1260

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kukhanova MK, Korovina AN, Kochetkov SN (2014) Human herpes simplex virus: life cycle and development of inhibitors. Biochem (Mosc) 79:1635–1652

    Article  CAS  Google Scholar 

  3. McGeoch DJ, Rixon FJ, Davison AJ (2006) Topics in herpesvirus genomics and evolution. Virus Res 117:90–104

    Article  CAS  PubMed  Google Scholar 

  4. Honess RW, Roizman B (1974) Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 14:8–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Watson RJ, Clements JB (1980) A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis. Nature 285:329–330

    Article  CAS  PubMed  Google Scholar 

  6. Weller SK, Coen DM (2012) Herpes simplex viruses: mechanisms of DNA replication. Cold Spring Harb Perspect Biol 4:a013011

    Article  PubMed  PubMed Central  Google Scholar 

  7. Smith JS, Robinson NJ (2002) Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infect Dis 186(Suppl 1):S3–28

    Article  PubMed  Google Scholar 

  8. HSV-040 Study Group, Abu-Elyazeed RR, Heineman T, Dubin G, Fourneau M, Leroux-Roels I, Leroux-Roels G, Richardus JH, Ostergaard L, Diez-Domingo J, Poder A, Van Damme P, Romanowski B, Blatter M, Silfverdal SA, Berglund J, Josefsson A, Cunningham AL, Flodmark CE, Tragiannidis A, Dobson S, Olafsson J, Puig-Barbera J, Mendez M, Barton S, Bernstein D, Mares J, Ratner P (2013) Safety and immunogenicity of a glycoprotein D genital herpes vaccine in healthy girls 10–17 years of age: results from a randomised, controlled, double-blind trial. Vaccine 31:6136–6143

    Article  Google Scholar 

  9. Lavoie S, Côté I, Pichette A, Gauthier C, Ouellet M, Nagau-Lavoie F, Mshvildadze V, Legault J (2017) Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis. BMC Complement Altern Med 17:123

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tavakoli A, Hashemzadeh MS (2019) Inhibition of herpes simplex virus type 1 by copper oxide nanoparticles. J Virol Methods:113688

  11. Hamroush A, Welch J (2014) Herpes Simplex epithelial keratitis associated with daily disposable contact lens wear. Cont Lens Anterior Eye 37:228–229

    Article  PubMed  Google Scholar 

  12. Rabinstein AA (2017) Herpes virus encephalitis in adults: current knowledge and old myths. Neurol Clin 35:695–705

    Article  PubMed  Google Scholar 

  13. Whitley RJ (2015) Herpes simplex virus infections of the central nervous system. Continuum (Minneap Minn) 21:1704–1713

    Google Scholar 

  14. Fine AJ, Sorbello A, Kortepeter C, Scarazzini L (2013) Central nervous system herpes simplex and varicella zoster virus infections in natalizumab-treated patients. Clin Infect Dis 57:849–852

    Article  CAS  PubMed  Google Scholar 

  15. Gamus D, Romano A (1988) Herpetic imprint on privileged areas of its target organs: local latency and reactivation in herpetic keratitis (1985). Metab Pediatr Syst Ophthalmol 11:37–40

    CAS  Google Scholar 

  16. Agyemang E, Magaret AS, Selke S, Johnston C, Corey L, Wald A (2018) Herpes simplex virus shedding rate: surrogate outcome for genital herpes recurrence frequency and lesion rates, and phase 2 clinical trials end point for evaluating efficacy of antivirals. J Infect Dis 218:1691–1699

    Article  PubMed  PubMed Central  Google Scholar 

  17. Grondin A, Baudou E, Pasquet M, Pelluau S, Jamal-Bey K, Bermot C, Villega F, Cheuret E (2020) Neonatal herpes simplex virus-1 recurrence with central nervous system disease in twins after completion of a six-month course of suppressive therapy: case report. Neuropediatrics 51:221–224

    Article  PubMed  Google Scholar 

  18. Ali M, Roback L, Mocarski ES (2019) Herpes simplex virus 1 ICP6 impedes TNF receptor 1-induced necrosome assembly during compartmentalization to detergent-resistant membrane vesicles. J Biol Chem 294:991–1004

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Zhao J, Xu S, Li J, He S, Zeng Y, Xie L, Xie N, Liu T, Lee K, Seo GJ, Chen L, Stabell AC, Xia Z, Sawyer SL, Jung J, Huang C, Feng P (2018) Species-specific deamidation of cGAS by herpes simplex virus UL37 protein facilitates viral replication. Cell Host Microb 24:234-248e5

    Article  CAS  Google Scholar 

  20. Maruzuru Y, Ichinohe T, Sato R, Miyake K, Okano T, Suzuki T, Koshiba T, Koyanagi N, Tsuda S, Watanabe M, Arii J, Kato A, Kawaguchi Y (2018) Herpes simplex virus 1 VP22 inhibits AIM2-Dependent inflammasome activation to enable efficient viral replication. Cell Host Microb 23:254-265e7

    Article  CAS  Google Scholar 

  21. Wutzler P (1997) Antiviral therapy of herpes simplex and varicella-zoster virus infections. Intervirology 40:343–356

    Article  CAS  PubMed  Google Scholar 

  22. Piret J, Boivin G (2011) Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother 55:459–472

    Article  CAS  PubMed  Google Scholar 

  23. Elion GB, Furman PA, Fyfe JA, de Miranda P, Beauchamp L, Schaeffer HJ (1977) Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci USA 74:5716–5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kleymann G (2005) Agents and strategies in development for improved management of herpes simplex virus infection and disease. Expert Opin Investig Drugs 14:135–161

    Article  CAS  PubMed  Google Scholar 

  25. Roa-Linares VC, Miranda-Brand Y, Tangarife-Castaño V, Ochoa R, García PA, Castro M, Betancur-Galvis L, San Feliciano A (2019) Anti-herpetic, anti-dengue and antineoplastic activities of simple and heterocycle-fused derivatives of terpenyl-1,4-naphthoquinone and 1,4-anthraquinone. Molecules 24

  26. Kimberlin DW, Coen DM, Biron KK, Cohen JI, Lamb RA, McKinlay M, Emini EA, Whitley RJ (1995) Molecular mechanisms of antiviral resistance. Antiviral Res 26:369–401

    Article  CAS  PubMed  Google Scholar 

  27. Bacon TH, Levin MJ, Leary JJ, Sarisky RT, Sutton D (2003) Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin Microbiol Rev 16:114–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brady RC, Bernstein DI (2004) Treatment of herpes simplex virus infections. Antiviral Res 61:73–81

    Article  CAS  PubMed  Google Scholar 

  29. Pan D, Kaye SB, Hopkins M, Kirwan R, Hart IJ, Coen DM (2014) Common and new acyclovir resistant herpes simplex virus-1 mutants causing bilateral recurrent herpetic keratitis in an immunocompetent patient. J Infect Dis 209:345–349

    Article  CAS  PubMed  Google Scholar 

  30. De Paor M, O'Brien K, Fahey T, Smith SM (2016) Antiviral agents for infectious mononucleosis (glandular fever). Cochrane Database Syst Rev 12:CD011487

    PubMed  Google Scholar 

  31. Orion E, Matz H, Wolf R (2005) The life-threatening complications of dermatologic therapies. Clin Dermatol 23:182–192

    Article  PubMed  Google Scholar 

  32. He L, Liao C, Tjong SC (2018) Scalable fabrication of high-performance transparent conductors using graphene oxide-stabilized single-walled carbon nanotube inks. Nanomaterials (Basel) 8

  33. Ng CT, Baeg GH, Yu LE, Ong CN, Bay BH (2018) Biomedical applications of nanomaterials as therapeutics. Curr Med Chem 25:1409–1419

    Article  CAS  PubMed  Google Scholar 

  34. Kavoosi F, Modaresi F, Sanaei M, Rezaei Z (2018) Medical and dental applications of nanomedicines. APMIS 126:795–803

    Article  PubMed  Google Scholar 

  35. Mukherjee S, Patra CR (2017) Biologically synthesized metal nanoparticles: recent advancement and future perspectives in cancer theranostics. Future Sci OA 3:FSO203

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9:30

    Article  CAS  Google Scholar 

  37. Malachová K, Praus P, Rybková Z, Kozák O (2011) Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl Clay Sci 53

  38. Cao X, Ye Y, Liu S (2011) Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 417:1–16

    Article  CAS  PubMed  Google Scholar 

  39. Rathi Sre PR, Reka M, Poovazhagi R, Arul Kumar M, Murugesan K (2015) Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim Acta A Mol Biomol Spectrosc 135:1137–1144

    Article  CAS  PubMed  Google Scholar 

  40. Gunputh UF, Le H, Lawton K, Besinis A, Tredwin C, Handy RD (2019) Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus. Nanotoxicology:1–14

  41. Küp F, Çoşkunçay S, Duman F (2020) Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): evaluation of their antibacterial, antioxidant and drug release system activities. Mater Sci Eng C Mater Biol Appl 107:110207

    Article  PubMed  Google Scholar 

  42. Ibrahim E, Zhang M, Zhang Y, Hossain A, Qiu W, Chen Y, Wang Y, Wu W, Sun G, Li B (2020) Green-synthesization of silver nanoparticles using endophytic bacteria isolated from garlic and its antifungal activity against wheat fusarium head blight pathogen Fusarium graminearum. Nanomaterials (Basel) 10

  43. Vrandečić K, Ćosić J, Ilić J, Ravnjak B, Selmani A, Galić E, Pem B, Barbir R, Vinković Vrček I, Vinković T (2020) Antifungal activities of silver and selenium nanoparticles stabilized with different surface coating agents. Pest Manag Sci

  44. Haggag EG, Elshamy AM, Rabeh MA, Gabr NM, Salem M, Youssif KA, Samir A, Bin Muhsinah A, Alsayari A, Abdelmohsen UR (2019) Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int J Nanomed 14:6217–6229

    Article  CAS  Google Scholar 

  45. Morris D, Ansar M, Speshock J, Ivanciuc T, Qu Y, Casola A, Garofalo R (2019) Antiviral and Immunomodulatory activity of silver nanoparticles in experimental RSV infection. Viruses 11

  46. Hassan D, Farghali M, Eldeek H, Gaber M, Elossily N, Ismail T (2019) Antiprotozoal activity of silver nanoparticles against Cryptosporidium parvum oocysts: new insights on their feasibility as a water disinfectant. J Microbiol Methods 165:105698

    Article  CAS  PubMed  Google Scholar 

  47. Bindhu MR, Umadevi M (2015) Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 135:373–378

    Article  CAS  PubMed  Google Scholar 

  48. Danciu C, Pinzaru I, Coricovac D, Andrica F, Sizemore I, Dehelean C, Baderca F, Lazureanu V, Soica C, Mioc M, Radeke H (2019) Betulin silver nanoparticles qualify as efficient antimelanoma agents in in vitro and in vivo studies. Eur J Pharm Biopharm 134:1–19

    Article  CAS  PubMed  Google Scholar 

  49. Meenakshisundaram S, Krishnamoorthy V, Jagadeesan Y, Vilwanathan R, Balaiah A (2020) Annona muricata assisted biogenic synthesis of silver nanoparticles regulates cell cycle arrest in NSCLC cell lines. Bioorg Chem 95:103451

    Article  CAS  PubMed  Google Scholar 

  50. Sharma V, Kaushik S, Pandit P, Dhull D, Yadav JP, Kaushik S (2019) Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl Microbiol Biotechnol 103:881–891

    Article  CAS  PubMed  Google Scholar 

  51. Tamilselvan S, Ashokkumar T, Govindaraju K (2017) Microscopy based studies on the interaction of bio-based silver nanoparticles with Bombyx mori Nuclear Polyhedrosis virus. J Virol Methods 242:58–66

    Article  CAS  PubMed  Google Scholar 

  52. Govindarajan M, Kadaikunnan S, Alharbi NS, Benelli G (2017) Single-step biological fabrication of colloidal silver nanoparticles using Hugonia mystax: larvicidal potential against Zika virus, dengue, and malaria vector mosquitoes. Artif Cells Nanomed Biotechnol 45:1317–1325

    Article  CAS  PubMed  Google Scholar 

  53. Borrego B, Lorenzo G, Mota-Morales JD, Almanza-Reyes H, Mateos F, López-Gil E, de la Losa N, Burmistrov VA, Pestryakov AN, Brun A, Bogdanchikova N (2016) Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomedicine 12:1185–1192

    Article  CAS  PubMed  Google Scholar 

  54. Sun RW, Chen R, Chung NP, Ho CM, Lin CL, Che CM (2005) Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun (Camb):5059–5061

  55. Lu L, Sun RW, Chen R, Hui CK, Ho CM, Luk JM, Lau GK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262

    Article  CAS  PubMed  Google Scholar 

  56. Hafidh RR, Abdulamir AS, Abu Bakar F, Sekawi Z, Jahansheri F, Jalilian FA (2015) Novel antiviral activity of mung bean sprouts against respiratory syncytial virus and herpes simplex virus 1: an in vitro study on virally infected Vero and MRC-5 cell lines. Bmc Complement Altern Med 15:1–16

    Article  Google Scholar 

  57. Darling AJ, Boose JA, Spaltro J (1998) Virus assay methods: accuracy and validation. Biologicals 26:105–110

    Article  CAS  PubMed  Google Scholar 

  58. Liao S, Zhang Y, Pan X, Zhu F, Jiang C, Liu Q, Cheng Z, Dai G, Wu G, Wang L, Chen L (2019) Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomed 14:1469–1487

    Article  CAS  Google Scholar 

  59. Crouch SP, Kozlowski R, Slater KJ, Fletcher J (1993) The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 160:81–88

    Article  CAS  PubMed  Google Scholar 

  60. Gong Y, Matthews B, Cheung D, Tam T, Gadawski I, Leung D, Holan G, Raff J, Sacks S (2002) Evidence of dual sites of action of dendrimers: SPL-2999 inhibits both virus entry and late stages of herpes simplex virus replication. Antiviral Res 55:319–329

    Article  CAS  PubMed  Google Scholar 

  61. Zhen H, Fang F, Ye DY, Shu SN, Zhou YF, Dong YS, Nie XC, Li G (2006) Experimental study on the action of allitridin against human cytomegalovirus in vitro: inhibitory effects on immediate-early genes. Antiviral Res 72:68–74

    Article  CAS  PubMed  Google Scholar 

  62. Hung PY, Ho BC, Lee SY, Chang SY, Kao CL, Lee SS, Lee CN (2015) Houttuynia cordata targets the beginning stage of herpes simplex virus infection. PLoS One 10:e0115475

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dai W, Wu Y, Bi J, Wang S, Li F, Kong W, Barbier J, Cintrat JC, Gao F, Gillet D, Su W, Jiang C (2018) Antiviral effects of ABMA against herpes simplex virus type 2 in vitro and in vivo. Viruses 10

  64. Liu S, Li L, Tan L, Liang X (2019) Inhibition of herpes simplex virus-1 replication by natural compound honokiol.  Virol Sin

  65. Tan L, Zhang C, Dematos J, Kuang L, Jung JU, Liang X (2016) CD95 signaling inhibits B Cell receptor-mediated gammaherpesvirus replication in apoptosis-resistant B lymphoma cells. J Virol 90:9782–9796

  66. Hou J, Zhang Z, Huang Q, Yan J, Zhang X, Yu X, Tan G, Zheng C, Xu F, He S (2017) Antiviral activity of PHA767491 against human herpes simplex virus in vitro and in vivo. BMC Infect Dis 17:217

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li MK, Liu YY, Wei F, Shen MX, Zhong Y, Li S, Chen LJ, Ma N, Liu BY, Mao YD, Li N, Hou W, Xiong HR, Yang ZQ (2018) Antiviral activity of arbidol hydrochloride against herpes simplex virus I in vitro and in vivo. Int J Antimicrob Agents 51:98–106

    Article  CAS  PubMed  Google Scholar 

  68. Gonzalez MM, Cabrerizo FM, Baiker A, Erra-Balsells R, Osterman A, Nitschko H, Vizoso-Pinto MG (2018) β-Carboline derivatives as novel antivirals for herpes simplex virus. Int J Antimicrob Agents 52:459–468

    Article  CAS  PubMed  Google Scholar 

  69. Cheng HY, Lin LT, Huang HH, Yang CM, Lin CC (2008) Yin Chen Hao Tang, a Chinese prescription, inhibits both herpes simplex virus type-1 and type-2 infections in vitro. Antiviral Res 77:14–19

    Article  CAS  PubMed  Google Scholar 

  70. Yang CM, Cheng HY, Lin TC, Chiang LC, Lin CC (2005) Acetone, ethanol and methanol extracts of Phyllanthus urinaria inhibit HSV-2 infection in vitro. Antiviral Res 67:24–30

    Article  CAS  PubMed  Google Scholar 

  71. Li Y, Lin Z, Guo M, Zhao M, Xia Y, Wang C, Xu T, Zhu B (2018) Inhibition of H1N1 influenza virus-induced apoptosis by functionalized selenium nanoparticles with amantadine through ROS-mediated AKT signaling pathways. Int J Nanomed 13:2005–2016

    Article  Google Scholar 

  72. Benassi-Zanqueta É, Marques CF, Nocchi SR, Dias Filho BP, Nakamura CV, Ueda-Nakamura T (2018) Parthenolide influences herpes simplex virus 1 replication in vitro. Intervirology 61:14–22

    Article  CAS  PubMed  Google Scholar 

  73. Harden EA, Falshaw R, Carnachan SM, Kern ER, Prichard MN (2009) Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antiviral Res 83:282–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alvarez AL, Habtemariam S, Juan-Badaturuge M, Jackson C, Parra F (2011) In vitro anti HSV-1 and HSV-2 activity of Tanacetum vulgare extracts and isolated compounds: an approach to their mechanisms of action. Phytother Res 25:296–301

    PubMed  Google Scholar 

  75. Su CT, Hsu JT, Hsieh HP, Lin PH, Chen TC, Kao CL, Lee CN, Chang SY (2008) Anti-HSV activity of digitoxin and its possible mechanisms. Antiviral Res 79:62–70

    Article  CAS  PubMed  Google Scholar 

  76. De Logu A, Loy G, Pellerano ML, Bonsignore L, Schivo ML (2000) Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus spread by Santolina insularis essential oil. Antiviral Res 48:177–185

    Article  PubMed  Google Scholar 

  77. Pinto B, Shukla S, Gedanken A, Sarid R (2010) Inhibition of HSV-1 Attachment, Entry, and Cell-to-Cell Spread by Functionalized Multivalent Gold Nanoparticles. Small 6:1044–1050

    Article  Google Scholar 

  78. David N, Paz P, Lenore P (1992) Domains of herpes simplex virus I glycoprotein B that function in virus penetration, cell-to-cell spread, and cell fusion. Virology 186:99–112

    Article  Google Scholar 

  79. Zhang XF, Gurunathan S (2016) Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy. Int J Nanomed 11:3655–3675

    Article  CAS  Google Scholar 

  80. Yuan YG, Peng QL, Gurunathan S (2017) Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomed 12:6487–6502

    Article  CAS  Google Scholar 

  81. Li H, Zhang J, Kumar A, Zheng M, Atherton SS, Yu FS (2006) Herpes simplex virus 1 infection induces the expression of proinflammatory cytokines, interferons and TLR7 in human corneal epithelial cells. Immunology 117:167–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Melchjorsen J, Sirén J, Julkunen I, Paludan SR, Matikainen S (2006) Induction of cytokine expression by herpes simplex virus in human monocyte-derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF-kappaB and IRF-3. J Gen Virol 87:1099–1108

    Article  CAS  PubMed  Google Scholar 

  83. Goodkin, Margot L, Ting, Adrian T, Blaho, John A (2003) NF-kB is required for apoptosis prevention during simplex virus type I infection. J Virol

  84. Gregory D, Hargett D, Holmes D, Money E, Bachenheimer SL (2004) Efficient replication by herpes simplex virus type 1 involves activation of the IkappaB kinase-IkappaB-p65 pathway. J Virol 78:13582–13590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yedowitz JC, Blaho JA (2005) Herpes simplex virus 2 modulates apoptosis and stimulates NF-kappaB nuclear translocation during infection in human epithelial HEp-2 cells. Virology 342:297–310

    Article  CAS  PubMed  Google Scholar 

  86. Li H, Li X, Wei Y, Tan Y, Liu X, Wu X (2009) HSV-2 induces TLRs and NF-kappaB-dependent cytokines in cervical epithelial cells. Biochem Biophys Res Commun 379:686–690

    Article  CAS  PubMed  Google Scholar 

  87. Lin SS, Chou MY, Ho CC, Kao CT, Tsai CH, Wang L, Yang CC (2005) Study of the viral infections and cytokines associated with recurrent aphthous ulceration. Microbes Infect 7:635–644

    Article  CAS  PubMed  Google Scholar 

  88. Steiner I, Benninger F (2013) Update on herpes virus infections of the nervous system. Curr Neurol Neurosci Rep 13:414

    Article  PubMed  Google Scholar 

  89. Egan KP, Wu S, Wigdahl B, Jennings SR (2013) Immunological control of herpes simplex virus infections. J Neurovirol 19:328–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bedadala GR, Palem JR, Graham L, Hill JM, McFerrin HE, Hsia SC (2011) Lytic HSV-1 infection induces the multifunctional transcription factor Early Growth Response-1 (EGR-1) in rabbit corneal cells. Virol J 8:262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20:595–601

    Article  CAS  PubMed  Google Scholar 

  92. Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules 16:8894–8918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett 3:129–133

    Article  PubMed Central  Google Scholar 

  94. Speshock JL, Murdock RC, Braydich-Stolle LK, Schrand AM, Hussain SM (2010) Interaction of silver nanoparticles with Tacaribe virus. J Nanobiotechnol 8:19

    Article  Google Scholar 

  95. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  PubMed  Google Scholar 

  96. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  PubMed  Google Scholar 

  97. Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mettenleiter TC (2004) Budding events in herpesvirus morphogenesis. Virus Res 106:167–180

    Article  CAS  PubMed  Google Scholar 

  99. Sampath P, Deluca NA (2008) Binding of ICP4, TATA-binding protein, and RNA polymerase II to herpes simplex virus type 1 immediate-early, early, and late promoters in virus-infected cells. J Virol 82:2339–2349

    Article  CAS  PubMed  Google Scholar 

  100. Darwish AS, Grady LM, Bai P, Weller SK (2015) ICP8 filament formation is essential for replication compartment formation during herpes simplex virus infection. J Virol 90:2561–2570

    Article  PubMed  Google Scholar 

  101. Fan Q, Kopp SJ, Connolly SA, Longnecker R (2017) Structure-based mutations in the herpes simplex virus 1 glycoprotein B ectodomain arm impart a slow-entry phenotype. mBio8

  102. Bekele AZ, Gokulan K, Williams KM, Khare S (2016) Dose and size-dependent antiviral effects of silver nanoparticles on feline calicivirus, a human norovirus surrogate. Foodborne Pathog Dis 13:239–244

    Article  CAS  PubMed  Google Scholar 

  103. Yang XX, Li CM, Huang CZ (2016) Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale 8:3040–3048

    Article  CAS  PubMed  Google Scholar 

  104. Mehrbod P, Motamed N, Tabatabaian M, Soleimani ER, Amini E, Shahidi M, Kheiri MT (2009) In vitro antiviral effect of "nanosilver" on influenza virus 17:88–93

  105. Khandelwal N, Kaur G, Chaubey KK, Singh P, Sharma S, Tiwari A, Singh SV, Kumar N (2014) Silver nanoparticles impair Peste des petits ruminants virus replication. Virus Res 190:1–7

    Article  CAS  PubMed  Google Scholar 

  106. Chen N, Zheng Y, Yin J, Li X, Zheng C (2013) Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. J Virol Methods 193:470–477

    Article  CAS  PubMed  Google Scholar 

  107. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Article  Google Scholar 

  108. Atanasiu D, Saw WT, Cohen GH, Eisenberg RJ (2010) Cascade of events governing cell-cell fusion induced by herpes simplex virus glycoproteins gD, gH/gL, and gB. J Virol 84:12292–12299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Goswami D, Mahapatra AD, Banerjee S, Kar A, Ojha D, Mukherjee PK, Chattopadhyay D (2018) Boswellia serrata oleo-gum-resin and β-boswellic acid inhibits HSV-1 infection in vitro through modulation of NF-кB and p38 MAP kinase signaling. Phytomedicine 51:94–103

    Article  CAS  PubMed  Google Scholar 

  110. Teresa Sciortino M, Medici MA, Marino-Merlo F, Zaccaria D, Giuffrè M, Venuti A, Grelli S, Mastino A (2007) Signaling pathway used by HSV-1 to induce NF-kappaB activation: possible role of herpes virus entry receptor A. Ann N Y Acad Sci 1096:89–96

    Article  CAS  PubMed  Google Scholar 

  111. Amici C, Rossi A, Costanzo A, Ciafrè S, Marinari B, Balsamo M, Levrero M, Santoro MG (2006) Herpes simplex virus disrupts NF-kappaB regulation by blocking its recruitment on the IkappaBalpha promoter and directing the factor on viral genes. J Biol Chem 281:7110–7117

    Article  CAS  PubMed  Google Scholar 

  112. Rajput S, Kumar D, Agrawal V (2020) Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Rep

  113. David L, Moldovan B, Vulcu A, Olenic L, Perde-Schrepler M, Fischer-Fodor E, Florea A, Crisan M, Chiorean I, Clichici S, Filip GA (2014) Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf B Biointerfaces 122:767–777

    Article  CAS  PubMed  Google Scholar 

  114. Hebeish A, El-Rafie MH, El-Sheikh MA, Seleem AA, El-Naggar ME (2014) Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol 65:509–515

    Article  CAS  PubMed  Google Scholar 

  115. Wong KK, Cheung SO, Huang L, Niu J, Tao C, Ho CM, Che CM, Tam PK (2009) Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem 4:1129–1135

    Article  CAS  PubMed  Google Scholar 

  116. Sharma RK, Cwiklinski K, Aalinkeel R, Reynolds JL, Sykes DE, Quaye E, Oh J, Mahajan SD, Schwartz SA (2017) Immunomodulatory activities of curcumin-stabilized silver nanoparticles: efficacy as an antiretroviral therapeutic. Immunol Invest 46:833–846

    Article  CAS  PubMed  Google Scholar 

  117. Ullah Khan S, Saleh TA, Wahab A, Khan M, Khan D, Ullah Khan W, Rahim A, Kamal S, Ullah Khan F, Fahad S (2018) Nanosilver: new ageless and versatile biomedical therapeutic scaffold. Int J Nanomedicine 13:733–762

    Article  PubMed  PubMed Central  Google Scholar 

  118. Moldovan B, David L, Vulcu A, Olenic L, Perde-Schrepler M, Fischer-Fodor E, Baldea I, Clichici S, Filip GA (2017) In vitro and in vivo anti-inflammatory properties of green synthesized silver nanoparticles using Viburnum opulus L. fruits extract. Mater Sci Eng C Mater Biol Appl 79:720–727

    Article  CAS  PubMed  Google Scholar 

  119. Field HJ, Vere Hodge RA (2013) Recent developments in anti-herpesvirus drugs. Br Med Bull 106:213–249

    Article  CAS  PubMed  Google Scholar 

  120. Balfour HH Jr, Benson C, Braun J, Cassens B, Erice A, Friedman-Kien A, Klein T, Polsky B, Safrin S (1994) Management of acyclovir-resistant herpes simplex and varicella-zoster virus infections. J Acquir Immune Defic Syndr (1988) 7: 254–260

  121. Andrei G, Topalis D, Fiten P, McGuigan C, Balzarini J, Opdenakker G, Snoeck R (2012) In vitro-selected drug-resistant varicella-zoster virus mutants in the thymidine kinase and DNA polymerase genes yield novel phenotype-genotype associations and highlight differences between antiherpesvirus drugs. J Virol 86:2641–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Major Research Plan in the field of Social Development of the Hunan Province (2020SK3024).

Author information

Authors and Affiliations

Authors

Contributions

LC and LW developed the research hypothesis and designed the experiments. XP performed the main experiments and wrote the main manuscript. YZ, SY, and YZ carried out literature search, data acquisition and manuscript editing. CX provided assistance for data acquisition, data analysis, and statistical analysis. All authors contributed to drafting and revising the article, gave final approval of the version to be published, and agreed to be accountable for all aspects of the work.

Corresponding authors

Correspondence to Linqian Wang or Liyu Chen.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this work.

Additional information

Handling Editor: Diego G. Diel.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The affiliation of author updated from “Xuanhe Pan1” to “Xuanhe Pan1,2”.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Zhang, Y., Zhao, Y. et al. Inhibitory activity and mechanism of silver nanoparticles against herpes simplex virus type 1. Arch Virol 167, 1619–1636 (2022). https://doi.org/10.1007/s00705-022-05467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05467-x

Navigation