Skip to main content

Advertisement

Log in

Prunus necrotic ringspot virus in Turkey: an immigrant population

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

An outbreak in northwestern Turkey of prunus necrotic ringspot virus (PNRSV, genus Ilarvirus, family Bromoviridae) was sampled in 2016-2018. Gene sequences from these isolates, together with all of the gene sequence data for this virus in the GenBank database (>300 non-recombinant coat protein (CP) genes and 20 complete genomic sequences) were analysed to determine the relationship of the Turkish PNRSV isolates to those from other parts of the world. Phylogenetic and population genetic methods independently showed that the most recent common ancestor of the world PNRSV population was probably American, not Eurasian. PNRSV has spread to Turkey on several occasions, as its CP sequences are among the terminal branches of three of the most sampled CP phylogroups. The complete PNRSV genome consists of three segments (RNA1, RNA2, and RNA3), with the larger two encoding replicases and the smallest encoding the movement protein and the CP. One quarter of the RNA1 and RNA2 genes were recombinants. The phylogenies of the CP and MP genes (i.e., different regions of RNA3) were closely correlated but did not correlate with those of RNA1 and RNA2, indicating that some of the isolates were reassortants. However, the non-reassortant ancestor could not be identified, probably because none of the complete genome sequences were from isolates from the basal CP phylogroups. Our results emphasize the importance of strict quarantine, both international and local, for the world's stone fruit crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The data supporting the findings of this study are included in this published article (and/or) its supplementary information. The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Verma N, Hallan V, Ram R, Zaidi AA (2002) Detection of Prunus necrotic ringspot virus in begonia by RT-PCR. Plant Pathol 51(6):800. https://doi.org/10.1046/j.1365-3059.2002.00770.x

    Article  Google Scholar 

  2. Fiore N, Fajardo TVM, Prodan S, Herranz MC, Aparicio F, Montealegre J et al (2008) Genetic diversity of the movement and coat protein genes of South American isolates of Prunus necrotic ringspot virus. Arch Virol 153:909–919. https://doi.org/10.1007/s00705-008-0066-1

    Article  CAS  PubMed  Google Scholar 

  3. Cui HG, Liu HZ, Chen J, Zhou JF, Qu LN, Suc JM et al (2015) Genetic diversity of Prunus necrotic ringspot virus infecting stone fruit trees grown at seven regions in China and differentiation of three phylogroups by multiplex RT-PCR. Crop Prot 74:30–36. https://doi.org/10.1016/j.cropro.2015.04.001

    Article  CAS  Google Scholar 

  4. Çelik A, Ertunç F (2019) First report of prunus necrotic ringspot virus infecting apple in Turkey. J Plant Pathol 101(4):1227. https://doi.org/10.1007/s42161-019-00286-7

    Article  Google Scholar 

  5. Karanfil A (2021) Prevalence and molecular characterization of Turkish isolates of the rose viruses. Crop Prot 143:105565. https://doi.org/10.1016/j.cropro.2021.105565

    Article  CAS  Google Scholar 

  6. Fulton RW (1985) Prunus necrotic ringspot ilarvirus. CMI/AAB Descriptions of Plant Viruses. Association of Applied Biologists, Wellesbourne, UK.

  7. Amari K, Burgos L, Pallás V, Sánchez-Pina MA (2009) Vertical transmission of Prunus necrotic ringspot virus: hitch-hiking from gametes to seedling. J Gen Virol 90(7):1767–1774. https://doi.org/10.1099/vir.0.009647-0

    Article  CAS  PubMed  Google Scholar 

  8. Jones RAC (2018) Plant and insect viruses in managed and natural environments: novel and neglected transmission pathways. Adv Virus Res 101:149–187. https://doi.org/10.1016/bs.aivir.2018.02.006

    Article  PubMed  Google Scholar 

  9. Aparicio F, Myrta A, Di Terlizzi B, Pallás V (1999) Molecular variability among isolates of Prunus necrotic ringspot virus from different Prunus spp. Phytopathology 89(11):991–999. https://doi.org/10.1094/phyto.1999.89.11.991

    Article  CAS  PubMed  Google Scholar 

  10. Kamenova I, Borisova A (2021) Molecular variability of the coat protein gene of prunus necrotic ringspot virus on sweet and sour cherry in Bulgaria. J Plant Pathol 103(1):97–104. https://doi.org/10.1007/s42161-020-00659-3

    Article  Google Scholar 

  11. Sokhandan-Bashir N, Kashiha M, Koolivand D, Eini O (2017) Detection and phylogenetic analysis of Prunus necrotic ringspot virus isolates from stone fruits in Iran. J Plant Pathol 99(3):1–14. https://doi.org/10.4454/jpp.v99i3.3986

    Article  Google Scholar 

  12. Kulshrestha S, Hallan V, Sharma A, Seth CA, Chauhan A, Zaidi AA (2013) Molecular characterization and intermolecular interaction of coat protein of Prunus necrotic ringspot virus: implications for virus assembly. Indian J Virol 24(2):235–241. https://doi.org/10.1007/s13337-013-0140-5

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fajardo TVM, Nascimento MB, Eiras M, Nickel O, Pio-Ribeiro G (2015) Molecular characterization of Prunus necrotic ringspot virus isolated from rose in Brazil. Cienc Rural 45(12):2197–2200. https://doi.org/10.1590/0103-8478cr20141810

    Article  CAS  Google Scholar 

  14. Boulila M, Tiba SB, Jilani S (2013) Molecular adaptation within the coat protein-encoding gene of Tunisian almond isolates of Prunus necrotic ringspot virus. J Genet 92:11–24. https://doi.org/10.1007/s12041-013-0211-9

    Article  CAS  PubMed  Google Scholar 

  15. Glasa M, Betinová E, Kúdela O, Šubr Z (2002) Biological and molecular characterisation of Prunus necrotic ringspot virus isolates and possible approaches to their phylogenetic typing. Ann Appl Biol 140:279–283. https://doi.org/10.1111/j.1744-7348.2002.tb00182.x

    Article  CAS  Google Scholar 

  16. Song S, Sun P, Chen Y, Ma Q, Wang X, Zhao M, Li Z (2019) Complete genome sequences of five prunus necrotic ringspot virus isolates from Inner Mongolia of China and comparison to other PNRSV isolates around the world. J Plant Pathol 101(4):1047–1054. https://doi.org/10.1007/s42161-019-00335-1

    Article  Google Scholar 

  17. Xing F, Gao D, Liu H, Wang H, Habili N, Li S (2020) Molecular characterization and pathogenicity analysis of prunus necrotic ringspot virus isolates from China rose (Rosa chinensis Jacq.). Arch Virol. 165(11):2479–2486. https://doi.org/10.1007/s00705-020-04739-8

    Article  CAS  PubMed  Google Scholar 

  18. Ulubas C, Ertunc F (2004) RT-PCR detection and molecular characterization of Prunus necrotic ringspot virus isolates occurring in Turkey. J Phytopathol 152(8–9):498–502. https://doi.org/10.1111/J.1439-0434.2004.00886.X

    Article  CAS  Google Scholar 

  19. Çevik B, Yardimci N, Çulal-Kılıç H (2011) Detection of viruses infecting stone fruits in Western Mediterranean Region of Turkey. Plant Pathol J 27(1):44–52. https://doi.org/10.5423/PPJ.2011.27.1.044

    Article  CAS  Google Scholar 

  20. Spiegel S, Tam Y, Maslenin L, Kolber M, Nemeth M, Rosner A (1999) Typing Prunus necrotic ringspot virus isolates by serology and restriction endonuclease analysis of PCR products. Ann Appl Biol 135(1):395–400. https://doi.org/10.1111/j.1744-7348.1999.tb00866.x

    Article  CAS  Google Scholar 

  21. Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–15492021

    Article  CAS  Google Scholar 

  23. Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38(Web Server issue):W7–W13. https://doi.org/10.1093/nar/gkq291

  24. Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maynard-Smith JM (1992) Analyzing the mosaic structure of genes. J Mol Evol 34:126–129. https://doi.org/10.1007/bf00182389

    Article  Google Scholar 

  26. Holmes EC, Worobey M, Rambaut A (1999) Phylogenetic evidence for recombination in dengue virus. Mol Biol Evol 16:405–409. https://doi.org/10.1093/oxfordjournals.molbev.a026121

    Article  CAS  PubMed  Google Scholar 

  27. Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573–582. https://doi.org/10.1093/bioinformatics/16.7.573

    Article  CAS  PubMed  Google Scholar 

  28. Martin DP, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563. https://doi.org/10.1093/bioinformatics/16.6.562

    Article  CAS  PubMed  Google Scholar 

  29. McGuire G, Wright F (2000) TOPAL 2.0: Improved detection of mosaic sequences within multiple alignments. Bioinformatics 16:130–134. https://doi.org/10.1093/bioinformatics/16.2.130

    Article  CAS  PubMed  Google Scholar 

  30. Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. PNAS 98:13757–13762. https://doi.org/10.1073/pnas.241370698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martin DP, Posada D, Crandall KA, Williamson C (2005) A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res. Human Retroviruses 21:98–102. https://doi.org/10.1089/aid.2005.21.98

    Article  CAS  Google Scholar 

  32. Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035–1047. https://doi.org/10.1534/genetics.106.068874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lemey P, Lott M, Martin DP, Moulton V (2009) Identifying recombinants in human and primate immunodeficiency virus sequence alignments using quartet scanning. BMC Bioinformatics 10:126. https://doi.org/10.1186/1471-2105-10-126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1:1–5. https://doi.org/10.1093/ve/vev003

    Article  Google Scholar 

  35. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect. Math. Life Sci. 17:57–86

    Google Scholar 

  36. Fourment M, Gibbs MJ (2006) PATRISTIC: a program for calculating patristic distances and graphically comparing the components of genetic change. BMC Evol Biol 6:1. https://doi.org/10.1186/1471-2148-6-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23(10):403–405. https://doi.org/10.1016/s0968-0004(98)01285-7

    Article  CAS  PubMed  Google Scholar 

  38. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biol 52:696–704. https://doi.org/10.1080/10635150390235520

    Article  Google Scholar 

  39. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/bf01731581

    Article  CAS  PubMed  Google Scholar 

  40. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:114–116. https://doi.org/10.1093/oxfordjournals.molbev.a026201

    Article  Google Scholar 

  41. Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 9(9):e108277. https://doi.org/10.1371/journal.pone.0108277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  43. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133(3):693–709. https://doi.org/10.1093/genetics/133.3.693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595

    Article  CAS  Google Scholar 

  45. Hudson RR (2000) A new statistic for detecting genetic differentiation. Genetics 155:2011–2014

    Article  CAS  Google Scholar 

  46. Santosa AI, Ertunc F (2021) Phylogenetic and diversity analyses of Garlic common latent virus based on the TGB and CP gene sequence. Plant Prot Sci. 57(3):179–187. https://doi.org/10.17221/149/2020-PPS

  47. Simmonds P, Aiewsakun P (2018) Virus classification - where do you draw the line? Arch Virol 163:2037–2046. https://doi.org/10.1007/s00705-018-3938-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wright S (1943) Isolation by distance. Genetics 28(2):114–138

    Article  CAS  Google Scholar 

  49. Hartl DL, Clark AG (1997) Principles of Population Genetics. Sinauer Associates, Sunderland

    Google Scholar 

  50. Hammond RW, Crosslin JM (1998) Virulence and molecular polymorphism of Prunus necrotic ringspot virus isolates. J Gen Virol 79(7):1815–1823. https://doi.org/10.1099/0022-1317-79-7-1815

    Article  CAS  PubMed  Google Scholar 

  51. Hajizadeh M, Gibbs AJ, Amirnia F, Glasa M (2019) The global phylogeny of Plum pox virus is emerging. J Gen Virol 100:1457–1468. https://doi.org/10.1099/jgv.0.001308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.Ç. provided personal funding to conduct field surveys and laboratory work in this study. This research is a part of the Doctoral dissertation of A.Ç. which was carried out in the Institute of Science at Ankara University, Turkey.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. A.Ç. performed field surveys, serological and molecular detection tests, and wrote the manuscript. A.Ç., A.I.S. and A.J.G. prepared sequence alignments, did phylogenetic and evolutionary analysis, and wrote and edited the manuscript. F.E. supervised the laboratory work and other analyses and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ali Çelik.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Elvira Fiallo-Olivé.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 32 KB)

Supplementary file2 (DOCX 1128 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelik, A., Santosa, A.I., Gibbs, A.J. et al. Prunus necrotic ringspot virus in Turkey: an immigrant population. Arch Virol 167, 553–562 (2022). https://doi.org/10.1007/s00705-022-05374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05374-1

Navigation