WHO. COVID-19 weekly epidemiological update, 27 July 2021. 2021.
Neerukonda SN, Katneni U (2020) A review on SARS-CoV-2 virology, pathophysiology, animal models, and anti-viral interventions. Pathogens 9(6):426
CAS
PubMed Central
Google Scholar
Cheng A, Zhang W, Xie Y, Jiang W, Arnold E, Sarafianos SG et al (2005) Expression, purification, and characterization of SARS coronavirus RNA polymerase. Virology 335(2):165–176
CAS
PubMed
Google Scholar
Ferron F, Subissi L, Silveira De Morais AT, Le NTT, Sevajol M, Gluais L et al (2018) Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc Natl Acad Sci 115(2):E162–E171
CAS
PubMed
Google Scholar
Sender R, Bar-On YM, Gleizer S, Bernshtein B, Flamholz A, Phillips R et al (2021) The total number and mass of SARS-CoV-2 virions. Proc Natl Acad Sci 118:25
Google Scholar
COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines; (April 21, 2020). Available from: https://www.covid19treatmentguidelines.nih.gov/.
Maurin M, Fenollar F, Mediannikov O, Davoust B, Devaux C, Raoult D (2021) Current status of putative animal sources of SARS-CoV-2 infection in humans: wildlife, domestic animals and pets. Microorganisms. 9(4):868
CAS
PubMed
PubMed Central
Google Scholar
Boechat JL, Chora I, Morais A, Delgado L (2021) The immune response to SARS-CoV-2 and COVID-19 immunopathology–current perspectives. Pulmonology. https://doi.org/10.1016/j.pulmoe.2021.03.008
Article
PubMed
PubMed Central
Google Scholar
Focosi D, Maggi F (2021) Neutralising antibody escape of SARS-CoV-2 spike protein: risk assessment for antibody-based Covid-19 therapeutics and vaccines. Rev Med Virol. https://doi.org/10.1002/rmv.2231
Article
PubMed
PubMed Central
Google Scholar
Mascola JR, Graham BS, Fauci AS (2021) SARS-CoV-2 viral variants—tackling a moving target. JAMA 325(13):1261–1262
CAS
PubMed
Google Scholar
SARS-CoV-2 Variant Classifications and Definitions23 Sep 2021. Available from: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html#Consequence.
Andrew Rambaut NL, Oliver Pybus, Wendy Barclay, Jeff Barrett, Alesandro Carabelli, Tom Connor, Tom Peacock, David L Robertson, Erik Volz. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations2020. Available from: https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563.
Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, et al (2020) Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv https://doi.org/10.1101/2020.12.21.20248640
Naveca F, Nascimento V, Souza V, Corado A, Nascimento F, Silva G, et al. Phylogenetic relationship of SARS-CoV-2 sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the Spike protein. Virological org Available at: https://virological.org/t/phylogenetic-relationship-of-sars-cov-2-sequences-from-amazonas-with-emerging-brazilian-variants-harboring-mutations-e484k-and-n501y-in-the-spike-protein/585. 2021.
B.1.617 variant first identified in India classified as variant of global concern [press release]. ctvnews.ca, 2021
Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK et al (2021) Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell. https://doi.org/10.1016/j.cell.2021.04.025
Article
PubMed
PubMed Central
Google Scholar
Gravagnuolo AM, Faqih L, Cronshaw C, Wynn J, Burglin L, Klapper P, et al (2021) Epidemiological investigation of new SARS-CoV-2 variant of concern 202012/01 in England. medRxiv https://doi.org/10.1101/2021.01.14.21249386
Davies NG, Jarvis CI, van Zandvoort K, Clifford S, Sun FY, Funk S, et al (2021) Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 593(7858):270–4
Google Scholar
Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, et al (2021) Transmission of SARS-CoV-2 Lineage B. 1.1. 7 in England: Insights from linking epidemiological and genetic data. medRxiv. https://doi.org/10.1101/2020.12.30.20249034
Graham MS, Sudre CH, May A, Antonelli M, Murray B, Varsavsky T et al (2021) Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B. 1.1. 7: an ecological study. Lancet Public Health. https://doi.org/10.1016/S2468-2667(21)00055-4
Article
PubMed
PubMed Central
Google Scholar
Mahase E (2021) Covid-19: Sore throat, fatigue, and myalgia are more common with new UK variant. BMJ. https://doi.org/10.1136/bmj.n288
Article
PubMed
Google Scholar
Tian F, Tong B, Sun L, Shi S, Zheng B, Wang Z et al (2021) Mutation N501Y in RBD of Spike Protein Strengthens the Interaction between COVID-19 and its Receptor ACE2. BioRxiv. https://doi.org/10.1101/2021.02.14.431117
Article
PubMed
PubMed Central
Google Scholar
Tada T, Dcosta BM, Samanovic-Golden M, Herati RS, Cornelius A, Mulligan MJ, et al (2021) Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv https://doi.org/10.1101/2021.02.05.430003
Ascoli CA (2021) Could mutations of SARS-CoV-2 suppress diagnostic detection? Nat Biotechnol 39(3):274–275
CAS
PubMed
Google Scholar
Wise J (2021) Covid-19: The E484K mutation and the risks it poses. BMJ. https://doi.org/10.1136/bmj.n359
Article
PubMed
Google Scholar
Makowski L, Olson-Sidford W, Weisel J (2021) Biological and clinical consequences of integrin binding via a rogue RGD motif in the SARS CoV-2 spike protein. Viruses 13(2):146
CAS
PubMed
PubMed Central
Google Scholar
Galloway SE, Paul P, MacCannell DR, Johansson MA, Brooks JT, MacNeil A et al (2021) Emergence of SARS-CoV-2 b. 1.1. 7 lineage—united states, December 29, 2020–January 12, 2021. Morbid Mortal Week Rep 70(3):95
CAS
Google Scholar
Pereira F (2021) SARS-CoV-2 variants combining spike mutations and the absence of ORF8 may be more transmissible and require close monitoring. Biochem Biophys Res Commun 550:8–14
CAS
PubMed
PubMed Central
Google Scholar
Ramírez JD, Muñoz M, Patiño LH, Ballesteros N, Paniz-Mondolfi A (2021) Will the emergent SARS-CoV2 B. 1.1. 7 lineage affect molecular diagnosis of COVID-19? J Med Virol 93(5):2566–2568
PubMed
Google Scholar
Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J et al (2021) Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592(7854):438–443
CAS
PubMed
Google Scholar
Peñarrubia L, Ruiz M, Porco R, Rao SN, Juanola-Falgarona M, Manissero D et al (2020) Multiple assays in a real-time RT-PCR SARS-CoV-2 panel can mitigate the risk of loss of sensitivity by new genomic variants during the COVID-19 outbreak. Int J Infect Dis 97:225–229
PubMed
PubMed Central
Google Scholar
Zhou D, Dejnirattisai W, Supasa P, Liu C, Mentzer AJ, Ginn HM et al (2021) Evidence of escape of SARS-CoV-2 variant B. 1.351 from natural and vaccine-induced sera. Cell. 184(9):2348-23461.e6
CAS
PubMed
PubMed Central
Google Scholar
Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, et al. (2020) Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv https://doi.org/10.1101/2020.12.21.20248640
Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y et al (2021) Antibody resistance of SARS-CoV-2 variants B. 1.351 and B. 1.1. 7. Nature. 593(7857):130–135
CAS
PubMed
Google Scholar
Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DdS, Mishra S et al (2021) Genomics and epidemiology of the P 1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372(6544):815–821
CAS
PubMed
PubMed Central
Google Scholar
Freitas AR, Lemos DR, Beckedorff OA, Cavalcante LP, Siqueira AM, Mello RC, et al. (2021) The increase in the risk of severity and fatality rate of covid-19 in southern Brazil after the emergence of the Variant of Concern (VOC) SARS-CoV-2 P. 1 was greater among young adults without pre-existing risk conditions. medRxiv https://doi.org/10.1101/2021.04.13.21255281
Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S, et al (2021) Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372(6544):815–21
CAS
PubMed
PubMed Central
Google Scholar
Hirotsu Y, Omata M (2021) Discovery of a SARS-CoV-2 variant from the P.1 lineage harboring K417T/E484K/N501Y mutations in Kofu, Japan. J Infect. 82(6):276–316
CAS
PubMed
PubMed Central
Google Scholar
Wang P, Casner RG, Nair MS, Wang M, Yu J, Cerutti G et al (2021) Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe. 29(5):747–751
CAS
PubMed
PubMed Central
Google Scholar
Lamarca AP, de Almeida LG, da Silva Francisco R, Lima LFA, Scortecci KC, Perez VP, et al. (2021) Genomic surveillance of SARS-CoV-2 tracks early interstate transmission of P. 1 lineage and diversification within P. 2 clade in Brazil. medRxiv. https://doi.org/10.1101/2021.03.21.21253418
Resende PC, Delatorre E, Gräf T, Mir D, Motta FC, Appolinario LR et al (2020) Evolutionary dynamics and dissemination pattern of the SARS-CoV-2 lineage B. 1.1. 33 during the early pandemic phase in Brazil. Front Microbiol. https://doi.org/10.3389/fmicb.2020.615280
Article
PubMed
Google Scholar
Lopez-Rincon A, Perez-Romero C, Tonda A, Mendoza-Maldonado L, Claassen E, Garssen J, et al (2021) Design of specific primer sets for the detection of B. 1.1. 7, B. 1.351 and P. 1 SARS-CoV-2 variants using deep learning. bioRxiv https://doi.org/10.1101/2021.01.20.427043
Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M et al (2021) Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. bioRxiv. https://doi.org/10.1101/2021.04.22.440932
Article
Google Scholar
Organization WH (2021) COVID-19 weekly epidemiological update, 9 May 2021
Organization WH (2021) COVID-19 weekly epidemiological update, edition 42, 01 June 2021
Ranjan R, Sharma A, Verma MK (2021) Characterization of the second wave of COVID-19 in India. medRxiv. https://doi.org/10.1101/2021.04.17.21255665
England PH (2021) SARS-CoV-2 variants of concern and variants under investigation in England. Techn Brief 16
Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L et al (2021) Assessing transmissibility of SARS-CoV-2 lineage B117 in England. Nature 593(7858):266–269
CAS
PubMed
Google Scholar
European Centre for Disease Prevention and Control (2021) Risk related to spread of new SARS-CoV-2 variants of concern in the EU/EEA. First update – 21 January. ECDC: Stockholm
WHO (2021) Weekly epidemiological update on COVID-19. 13 April 2021
Ong SWX, Young BE, Lye DC (2021) Lack of detail in population-level data impedes analysis of SARS-CoV-2 variants of concern and clinical outcomes. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(21)00201-2
Article
PubMed
PubMed Central
Google Scholar
Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD et al (2021) Estimated transmissibility and impact of SARS-CoV-2 lineage B. 1.1. 7 in England. Science. 372:6538
Google Scholar
Leung K, Shum MH, Leung GM, Lam TT, Wu JT (2021) Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Eurosurveillance 26(1):2002106
PubMed Central
Google Scholar
Davies NG, Jarvis CI, van Zandvoort K, Clifford S, Sun FY, Funk S et al (2021) Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 593(7858):270–274
CAS
PubMed
Google Scholar
Schuit M, Biryukov J, Beck K, Yolitz J, Bohannon J, Weaver W, et al (2021) The stability of an isolate of the SARS-CoV-2 B.1.1.7 lineage in aerosols is similar to three earlier isolates. J Infect Dis
Liu Y, Liu J, Plante KS, Plante JA, Xie X, Zhang X, et al (2021) The N501Y spike substitution enhances SARS-CoV-2 transmission. bioRxiv. https://doi.org/10.1101/2021.03.08.434499
Article
PubMed
PubMed Central
Google Scholar
Johnson BA, Xie X, Bailey AL, Kalveram B, Lokugamage KG, Muruato A et al (2021) Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature 591(7849):293–299
CAS
PubMed
PubMed Central
Google Scholar
Saito A, Irie T, Suzuki R, Maemura T, Nasser H, Uriu K, et al (2021) SARS-CoV-2 spike P681R mutation, a hallmark of the Delta variant, enhances viral fusogenicity and pathogenicity. bioRxiv https://doi.org/10.1101/2021.06.17.448820
Article
PubMed
PubMed Central
Google Scholar
Felipe N, Valdinete N, Victor S, André C, Fernanda N, George S, et al (2021) Nature Portfolio
Naveca F, Nascimento V, Souza V, Corado A, Nascimento F, Silva G, et al (2021) COVID-19 epidemic in the Brazilian state of Amazonas was driven by long-term persistence of endemic SARS-CoV-2 lineages and the recent emergence of the new Variant of Concern P. 1.
Coutinho RM, Marquitti FMD, Ferreira LS, Borges ME, da Silva RLP, Canton O, et al (2021) Model-based evaluation of transmissibility and reinfection for the P 1 variant of the SARS-CoV-2. medRxiv https://doi.org/10.1101/2021.03.03.21252706
Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S, et al (2021) Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil. medRxiv
Nelson G, Buzko O, Spilman P, Niazi K, Rabizadeh S, Soon-Shiong P (2021) Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant. bioRxiv https://doi.org/10.1101/2021.01.13.426558
Singh J, Rahman SA, Ehtesham NZ, Hira S, Hasnain SE (2021) SARS-CoV-2 variants of concern are emerging in India. Nature Med 27:1131–1133
CAS
PubMed
Google Scholar
gov.wales. Technical Advisory Group: advice from TAG and the Chief Scientific Advisor for Health on the Delta Variant (18 June 2021). Available from: https://gov.wales/technical-advisory-group-advice-tag-and-chief-scientific-advisor-health-delta-variant.
Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-Atanasova K, Danon L (2021) Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ. 372:n579
PubMed
Google Scholar
Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, et al (2021) Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. medRxiv https://doi.org/10.1101/2021.03.07.21252647
McCallum M, Bassi J, Marco A, Chen A, Walls AC, Iulio JD, et al (2021) SARS-CoV-2 immune evasion by variant B1427/B1429. bioRxiv. https://doi.org/10.1101/2021.03.31.437925
Ferreira I, Datir R, Papa G, Kemp S, Meng B, Rakshit P, et al (2021) SARS-CoV-2 B.1.617 emergence and sensitivity to vaccine-elicited antibodies. bioRxiv https://doi.org/10.1101/2021.05.08.443253
Yadav PD, Mohandas S, Shete AM, Nyayanit DA, Gupta N, Patil DY, et al (2021) SARS CoV-2 variant B.1.617.1 is highly pathogenic in hamsters than B.1 variant. bioRxiv. https://doi.org/10.1101/2021.05.05.442760
Control ECfDPa. Emergence of SARS-CoV-2 B.1.617 variants in India and situation in the EU/EEA. ECDC: Stockholm. 11 May 2021
Cele S, Gazy I, Jackson L, Hwa S-H, Tegally H, Lustig G, et al (2021) Escape of SARS-CoV-2 501Y.V2 variants from neutralization by convalescent plasma. medRxiv https://doi.org/10.1101/2021.01.26.21250224
Edridge AWD, Kaczorowska J, Hoste ACR, Bakker M, Klein M, Loens K et al (2020) Seasonal coronavirus protective immunity is short-lasting. Nat Med 26(11):1691–1693
CAS
PubMed
Google Scholar
Aldridge R, Lewer D, Beale S, Johnson A, Zambon M, Hayward A, et al (2020) Seasonality and immunity to laboratory-confirmed seasonal coronaviruses (HCoV-NL63, HCoV-OC43, and HCoV-229E): results from the Flu Watch cohort study [version 2; peer review: 2 approved]. Welcome Open Res https://doi.org/10.12688/wellcomeopenres.15812.2
McCarthy KR, Rennick LJ, Nambulli S, Robinson-McCarthy LR, Bain WG, Haidar G et al (2021) Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science 371(6534):1139–1142
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Beltran WF, Lam EC, Astudillo MG, Yang D, Miller TE, Feldman J et al (2021) COVID-19-neutralizing antibodies predict disease severity and survival. Cell 184(2):476–88.e11
CAS
PubMed
Google Scholar
Garcia-Beltran WF, Lam EC, St. Denis K, Nitido AD, Garcia ZH, Hauser BM, et al (2021) Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. https://doi.org/10.1016/j.cell.2021.03.013
Article
PubMed
PubMed Central
Google Scholar
Shen X, Tang H, McDanal C, Wagh K, Fischer W, Theiler J et al (2021) SARS-CoV-2 variant B117 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host Microbe 29(4):529–539
CAS
PubMed
PubMed Central
Google Scholar
Muik A, Wallisch AK, Sänger B, Swanson KA, Mühl J, Chen W et al (2021) Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science. 371(6534):1152–1153
CAS
PubMed
PubMed Central
Google Scholar
Wu K, Werner AP, Moliva JI, Koch M, Choi A, Stewart-Jones GBE, et al (2021) mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv https://doi.org/10.1101/2021.01.25.427948
Hoffmann M, Arora P, Groß R, Seidel A, Hörnich BF, Hahn AS et al (2021) SARS-CoV-2 variants B1351 and P1 escape from neutralizing antibodies. Cell. https://doi.org/10.1016/j.cell.2021.03.036
Article
PubMed
PubMed Central
Google Scholar
Edara VV, Norwood C, Floyd K, Lai L, Davis-Gardner ME, Hudson WH et al (2021) Infection- and vaccine-induced antibody binding and neutralization of the B1351 SARS-CoV-2 variant. Cell Host Microbe. https://doi.org/10.1016/j.chom.2021.03.009
Article
PubMed
PubMed Central
Google Scholar
Zhou D, Dejnirattisai W, Supasa P, Liu C, Mentzer AJ, Ginn HM et al (2021) Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell. https://doi.org/10.1016/j.cell.2021.02.037
Article
PubMed
PubMed Central
Google Scholar
Dong J, Zost SJ, Greaney AJ, Starr TN, Dingens AS, Chen EC, et al (2021) Genetic and structural basis for recognition of SARS-CoV-2 spike protein by a two-antibody cocktail. bioRxiv. https://doi.org/10.1101/2021.01.27.428529
Wang P, Liu L, Iketani S, Luo Y, Guo Y, Wang M, et al (2021) Increased resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 to antibody neutralization. bioRxiv https://doi.org/10.1016/j.chom.2021.04.007
Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B et al (2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nature Med 27(4):622–625
CAS
PubMed
Google Scholar
McCallum M, Bassi J, Marco AD, Chen A, Walls AC, Iulio JD, et al (2021) SARS-CoV-2 immune evasion by variant B1427/B1429. bioRxiv https://doi.org/10.1101/2021.03.31.437925
Shen X, Tang H, Pajon R, Smith G, Glenn GM, Shi W et al (2021) Neutralization of SARS-CoV-2 Variants B1429 and B1351. New Engl J Med. https://doi.org/10.1056/NEJMc2103740
Article
PubMed
Google Scholar
Tchesnokova V, Kulakesara H, Larson L, Bowers V, Rechkina E, Kisiela D, et al (2021) Acquisition of the L452R mutation in the ACE2-binding interface of Spike protein triggers recent massive expansion of SARS-Cov-2 variants. bioRxiv https://doi.org/10.1101/2021.02.22.432189
Jacobson KB, Pinsky BA, Rath MEM, Wang H, Miller JA, Skhiri M, et al (2021) Post-vaccination SARS-CoV-2 infections and incidence of the B.1.427/B.1.429 variant among healthcare personnel at a northern California academic medical center. medRxiv. https://doi.org/10.1101/2021.04.14.21255431
Javanmardi K, Chou C-W, Terrace CI, Annapareddy A, Kaoud TS, Guo Q, et al (2021) Rapid characterization of spike variants via mammalian cell surface display. bioRxiv. https://doi.org/10.1101/2021.03.30.437622.
Edara V-V, Lai L, Sahoo MK, Floyd K, Sibai M, Solis D, et al. (2021) Infection and vaccine-induced neutralizing antibody responses to the SARS-CoV-2 B.1.617.1 variant. bioRxiv. https://doi.org/10.1101/2021.05.09.443299
Yadav PD, Sapkal GN, Abraham P, Ella R, Deshpande G, Patil DY, et al. (2021) Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees. bioRxiv. https://doi.org/10.1101/2021.04.23.441101
Callaway E, Mallapaty S (2021) Novavax offers first evidence that COVID vaccines protect people against variants. Nature 590(7844):17
CAS
PubMed
Google Scholar
Emary KRW, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S et al (2021) Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet. 397(10282):1351–1362
CAS
PubMed
PubMed Central
Google Scholar
Nasreen S, Chung H, He S, Brown KA, Gubbay JB, Buchan SA, et al. (2021) Effectiveness of COVID-19 vaccines against variants of concern in Ontario, Canada. medRxiv. https://doi.org/10.1101/2021.06.28.21259420
Lefèvre B, Tondeur L, Madec Y, Grant R, Lina B, van der Werf S, et al. (2021) Impact of B.1.351 (beta) SARS-CoV-2 variant on BNT162b2 mRNA vaccine effectiveness in long-term care facilities of eastern France: a retrospective cohort study. medRxiv. https://doi.org/10.1101/2021.07.28.21261285
Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, Tang P, Hasan MR et al (2021) mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nature Med 27(9):1614–21
CAS
PubMed
Google Scholar
Seppälä E, Veneti L, Starrfelt J, Danielsen AS, Bragstad K, Hungnes O et al (2021) Vaccine effectiveness against infection with the Delta (B 1617 2) variant, Norway, April to August 2021. Euro Surveill 26(35):2100793
PubMed Central
Google Scholar
González S, Olszevicki S, Salazar M, Calabria A, Regairaz L, Marín L et al (2021) Effectiveness of the first component of Gam-COVID-Vac (Sputnik V) on reduction of SARS-CoV-2 confirmed infections, hospitalisations and mortality in patients aged 60–79: a retrospective cohort study in Argentina. EClinicalMedicine. https://doi.org/10.1016/j.eclinm.2021.101126
Article
PubMed
PubMed Central
Google Scholar
Wang L, Zhou T, Zhang Y, Yang ES, Schramm CA, Shi W, et al (2021) Antibodies with potent and broad neutralizing activity against antigenically diverse and highly transmissible SARS-CoV-2 variants. bioRxiv https://doi.org/10.1101/2021.02.25.432969
Baum A, Fulton BO, Wloga E, Copin R, Pascal KE, Russo V et al (2020) Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 369(6506):1014–1018
CAS
PubMed
Google Scholar
Becker M, Dulovic A, Junker D, Ruetalo N, Kaiser PD, Pinilla YT et al (2021) Immune response to SARS-CoV-2 variants of concern in vaccinated individuals. Nat Commun 12(1):3109
CAS
PubMed
PubMed Central
Google Scholar
Hoffmann M, Hofmann-Winkler H, Krüger N, Kempf A, Nehlmeier I, Graichen L, et al. (2021) SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination. bioRxiv. https://doi.org/10.1101/2021.05.04.442663
Rathnasinghe R, Jangra S, Cupic A, Martínez-Romero C, Mulder LC, Kehrer T et al (2021) The N501Y mutation in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and post-vaccination human sera. MedRxiv. https://doi.org/10.1101/2021.01.19.21249592
Article
PubMed
PubMed Central
Google Scholar
Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR et al (2021) Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nature Med 27(4):620–621
CAS
PubMed
Google Scholar
Chen RE, Zhang X, Case JB, Winkler ES, Liu Y, VanBlargan LA et al (2021) Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med 27(4):717–726
CAS
PubMed
PubMed Central
Google Scholar
Wu K, Werner AP, Koch M, Choi A, Narayanan E, Stewart-Jones GBE et al (2021) Serum neutralizing activity elicited by mRNA-1273 vaccine. New Engl J Med 384(15):1468–1470
PubMed
Google Scholar
Resende PC, Bezerra JF, de Vasconcelos RHT, Arantes I, Appolinario L, Mendonça AC, et al. (2021) Spike E484K mutation in the first SARS-CoV-2 reinfection case confirmed in Brazil, 2020. Virological 10
Nonaka CK, Franco MM, Gräf T, de Lorenzo Barcia CA, de Ávila Mendonça RN, de Sousa KAF et al (2021) Genomic evidence of SARS-CoV-2 reinfection involving E484K spike mutation, Brazil. Emerg Infect Dis. 27(5):1522-1524
CAS
PubMed
PubMed Central
Google Scholar
Naveca F, da Costa C, Nascimento V, Souza V, Corado A, Nascimento F, et al. (2021) SARS-CoV-2 reinfection by the new Variant of Concern (VOC) P. 1 in Amazonas, Brazil. virological org Preprint available at: https://virological.org/t/sars-cov-2-reinfection-by-thenew-variant-of-concern-voc-p-1-in-amazonas-brazil/596 Available at: https://virological.org/t/sars-cov-2-reinfection-by-the-new-variant-of-concern-voc-p-1-in-amazonas-brazil/596
Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E, Loes AN et al (2021) Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. Cell Host Microbe 29(1):44-57.e9
CAS
PubMed
PubMed Central
Google Scholar
Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva FA, Wojcechowskyj JA et al (2021) Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell 184(5):1171–87.e20
CAS
PubMed
PubMed Central
Google Scholar
Williams TC, Burgers WA (2021) SARS-CoV-2 evolution and vaccines: cause for concern? Lancet Respir Med 9(4):333–335
CAS
PubMed
PubMed Central
Google Scholar
Motozono C, Toyoda M, Zahradnik J, Ikeda T, Saito A, Tan TS, et al. (2021) An emerging SARS-CoV-2 mutant evading cellular immunity and increasing viral infectivity. bioRxiv. https://doi.org/10.1101/2021.04.02.438288.
Geers D, Shamier MC, Bogers S, Hartog Gd, Gommers L, Nieuwkoop NN, et al. (2021) SARS-CoV-2 variants of concern partially escape humoral but not T cell responses in COVID-19 convalescent donors and vaccine recipients. Sci Immunol 6(59):eabj1750
Jung JH, Rha M-S, Sa M, Choi HK, Jeon JH, Seok H et al (2021) SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells. Nat Commun 12(1):4043
CAS
PubMed
PubMed Central
Google Scholar
Kasuga Y, Zhu B, Jang K-J, Yoo J-S (2021) Innate immune sensing of coronavirus and viral evasion strategies. Exp Mol Med 53(5):723–736
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Bastard P, Liu Z, Pen JL, Moncada-Velez M, Chen J, et al. (2020)Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 370(6515):eabd4570
van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, Kersten S et al (2020) Presence of genetic variants among young men with severe COVID-19. JAMA 324(7):663–673
PubMed
Google Scholar
Yang Z, Zhang X, Wang F, Wang P, Kuang E, Li X (2020) Suppression of MDA5-mediated antiviral immune responses by NSP8 of SARS-CoV-2. bioRxiv. https://doi.org/10.1101/2020.08.12.247767
Jiang H-w, Zhang H-n, Meng Q-f, Xie J, Li Y, Chen H et al (2020) SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70. Cell Mol Immunol 17(9):998–1000
CAS
PubMed
Google Scholar
Mu J, Fang Y, Yang Q, Shu T, Wang A, Huang M et al (2020) SARS-CoV-2 N protein antagonizes type I interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2. Cell Discovery. 6(1):1–4
Google Scholar
Zheng Y, Zhuang M-W, Han L, Zhang J, Nan M-L, Zhan P et al (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal Transduct Target Ther 5(1):1–13
Google Scholar
Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RH (2021) (2021) Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature. 593(7858):270–274
CAS
PubMed
Google Scholar
Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G (2020) Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur J Epidemiol 35(12):1123–1138
CAS
PubMed
PubMed Central
Google Scholar
Holmes L Jr, Enwere M, Williams J, Ogundele B, Chavan P, Piccoli T et al (2020) Black-white risk differentials in COVID-19 (SARS-COV2) Transmission, mortality and case fatality in the United States: translational epidemiologic perspective and challenges. Int J Environ Res Public Health. 17(12):4322
PubMed Central
Google Scholar
Paredes MI, Lunn S, Famulare M, Frisbie LA, Painter I, Burstein R, et al. (2021) Associations between SARS-CoV-2 variants and risk of COVID-19 hospitalization among confirmed cases in Washington State: a retrospective cohort study. medRxiv https://doi.org/10.1101/2021.09.29.21264272
Sheikh A, McMenamin J, Taylor B, Robertson C (2021) SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet 397(10293):2461–2462
CAS
PubMed
PubMed Central
Google Scholar
England PH (2021) SARS-CoV-2 variants of concern and variants under investigation in England. Techn Brief
Ong SWX, Chiew CJ, Ang LW, Mak T-M, Cui L, Toh MPH, et al (2021) Clinical and virological features of SARS-CoV-2 variants of concern: a retrospective cohort study comparing B. 1.1. 7 (Alpha), B. 1.315 (Beta), and B. 1.617. 2 (Delta)
Walensky RP, Walke HT, Fauci AS (2021) SARS-CoV-2 variants of concern in the United States—Challenges and opportunities. JAMA 325(11):1037–1038
CAS
PubMed
PubMed Central
Google Scholar
Guo S, Liu K, Zheng J (2021) The genetic variant of SARS-CoV-2: would It matter for controlling the devastating pandemic? Int J Biol Sci 17(6):1476
CAS
PubMed
PubMed Central
Google Scholar
Abdool Karim SS, de Oliveira T (2021) New SARS-CoV-2 variants—clinical, public health, and vaccine implications. New Engl J Med 384(19):1866–1868
PubMed
Google Scholar
Organization WH (2021) Methods for the detection and identification of SARS-CoV-2 variants, March 2021. World Health Organization, Regional Office for Europe
Google Scholar
Organization WH (2021) Genomic sequencing of SARS-CoV-2: a guide to implementation for maximum impact on public health, 8 January 2021
Landis J, Moorad R, Pluta LJ, Caro-Vegas C, McNamara RP, Eason AB, et al (2021) Intra-host evolution provides for continuous emergence of SARS-CoV-2 variants. medRxiv
Food U, Administration D (2021) Genetic Variants of SARS-CoV-2 May Lead to False Negative Results with Molecular Tests for Detection of SARS-CoV-2-Letter to Clinical Laboratory Staff and Health Care Providers.[updated 8 January 2021
Vogels CB, Breban M, Alpert T, Petrone ME, Watkins AE, Hodcroft E, et al. (2021) PCR assay to enhance global surveillance for SARS-CoV-2 variants of concern. medRxiv https://doi.org/10.1101/2021.01.28.21250486
Korukluoglu G, Kolukirik M, Bayrakdar F, Ozgumus GG, Altas AB, Cosgun Y, et al. (2021) 40 minutes RT-qPCR Assay for Screening Spike N501Y and HV69-70del Mutations. bioRxiv https://doi.org/10.1101/2021.01.26.428302
Perchetti GA, Zhu H, Mills MG, Shrestha L, Wagner C, Bakhash SM, et al. (2021) Specific allelic discrimination of N501Y and other SARS-CoV-2 mutations by ddPCR detects B 11 7 lineage in Washington State. medRxiv https://doi.org/10.1101/2021.03.10.21253321
Courjon J-V, Contenti J, Demonchy E, Levraut J, Barbry P, Rios G, et al. (2021) Spread of the SARS-CoV-2 UK-variant in the South East of France: impact on COVID-19 patients age, comorbidity profiles and clinical presentation, week 50 2020 to week 8 2021. medRxiv
Wang H, Miller J, Verghese M, Sibai M, Solis D, Mfuh KO, et al. (2021) Multiplex SARS-CoV-2 Genotyping PCR for Population-Level Variant Screening and Epidemiologic Surveillance. medRxiv
Banada PP, Green R, Banik S, Chopoorian A, Streck D, Jones R, et al. (2021) A Simple RT-PCR Melting temperature Assay to Rapidly Screen for Widely Circulating SARS-CoV-2 Variants. medRxiv
Funk T, Pharris A, Spiteri G, Bundle N, Melidou A, Carr M et al (2021) Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021. Euro Surveill 26(16):2100348
CAS
PubMed Central
Google Scholar
Bodin K, Rocklov J (2021) Inherent random fluctuations in COVID-19 outbreaks may explain rapid growth of new mutated virus variants. medRxiv
Sabino EC, Buss LF, Carvalho MP, Prete CA, Crispim MA, Fraiji NA et al (2021) Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. The Lancet 397(10273):452–455
CAS
Google Scholar
Eguia RT, Crawford KHD, Stevens-Ayers T, Kelnhofer-Millevolte L, Greninger AL, Englund JA et al (2021) A human coronavirus evolves antigenically to escape antibody immunity. PLoS Pathog. 17(4):e1009453
CAS
PubMed
PubMed Central
Google Scholar
Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC et al (2020) Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife. 9:e61312
CAS
PubMed
PubMed Central
Google Scholar
Mullard A (2020) How COVID vaccines are being divvied up around the world. Nature
Fontanet A, Autran B, Lina B, Kieny MP, Karim SSA, Sridhar D (2021) SARS-CoV-2 variants and ending the COVID-19 pandemic. The Lancet 397(10278):952–954
CAS
Google Scholar
Racaniello V. Is there a limit to how much the coronavirus can mutate? livescience.com, February 11, 2021.
Moore JP (2021) Approaches for optimal use of different COVID-19 vaccines: issues of viral variants and vaccine efficacy. JAMA 325(13):1251–1252
CAS
PubMed
Google Scholar
Meera Chand SH (2020) Gavin Dabrera, Christina Achison, Wendy Barclay, Neil Ferguson, Erik Volz, Nick Loman, Andrew Rambaut, Jeff Barrett Investigation of novel SARS-COV-2 variant Variant of Concern 202012/01. Public Health England, England
Google Scholar
Andrew Rambaut NL, Oliver Pybus, Wendy Barclay, Jeff Barrett, Alesandro Carabelli, Tom Connor, Tom Peacock, David L Robertson, Erik Volz (2020) Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations
Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M et al (2021) SARS-CoV-2 Spike Mutations, L452R, T478K, E484Q and P681R, in the Second Wave of COVID-19 in Maharashtra, India. Microorganisms. 9(7):1542
CAS
PubMed
PubMed Central
Google Scholar
Motozono C, Toyoda M, Zahradnik J, Saito A, Nasser H, Tan TS et al (2021) SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe 29(7):1124–36.e11
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Wang R, Wang M, Wei G-W (2020) Mutations Strengthened SARS-CoV-2 Infectivity. J Mol Biol 432(19):5212–5226
CAS
PubMed
PubMed Central
Google Scholar
Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, et al (2020) Evolution of antibody immunity to SARS-CoV-2. bioRxiv https://doi.org/10.1101/2020.11.03.367391
Nonaka CK, Franco MM, Gräf T, de Lorenzo Barcia CA, de Ávila Mendonça RN, De Sousa KAF et al (2021) Genomic evidence of SARS-CoV-2 reinfection involving E484K spike mutation, Brazil. Emerg Infect Dis 27(5):1522
CAS
PubMed
PubMed Central
Google Scholar
Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY et al (2021) Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 29(3):463–76.e6
CAS
PubMed
PubMed Central
Google Scholar
Andreano E, Piccini G, Licastro D, Casalino L, Johnson NV, Paciello I, et al. (2020) SARS-CoV-2 escape <em>in vitro</em> from a highly neutralizing COVID-19 convalescent plasma. bioRxiv. https://doi.org/10.1101/2020.12.28.424451
Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD et al (2020) SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun 11(1):6013
CAS
PubMed
PubMed Central
Google Scholar
Johnson BA, Xie X, Kalveram B, Lokugamage KG, Muruato A, Zou J, et al. (2020) Furin Cleavage Site Is Key to SARS-CoV-2 Pathogenesis. bioRxiv https://doi.org/10.1101/2020.08.26.268854
Haynes WA, Kamath K, Lucas C, Shon J, Iwasaki A. (2021) Impact of B.1.1.7 variant mutations on antibody recognition of linear SARS-CoV-2 epitopes. medRxiv. https://doi.org/10.1101/2021.01.06.20248960.