Skip to main content
Log in

Characterization of a strong constitutive promoter from paper mulberry vein banding virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

This article has been updated

Abstract

Paper mulberry vein banding virus (PMVBV), a member of the genus Badnavirus in the family Caulimoviridae, infects paper mulberry (Broussonetia papyrifera), a dicotyledonous plant. Putative promoter regions in the PMVBV genome were tested using recombinant plant expression vectors, revealing that the promoter activity of three genome fragments was about 1.5-fold higher than that of the 35S promoter of cauliflower mosaic virus in Nicotiana benthamiana. In transformed transgenic Arabidopsis thaliana plants, these promoter constructs showed constitutive expression. Based on the activity and gene expression patterns of these three promoter constructs, a fragment of 384 bp (named PmVP) was deduced to contain the full-length promoter of the PMVBV genome. The results suggest that the PMVBV-derived promoter can be used for the constitutive expression of transgenes in dicotyledonous plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 05 December 2021

    “Typographical error corrected. Redundant '??' before and after 'β-glucuronidase' deleted.”.

References

  1. Benfey PN, Ren L, Chua NH (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 8:2195–2202

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    CAS  PubMed  Google Scholar 

  3. Bhat AI, Hohn T, Selvarajan R (2016) Badnaviruses: the current global scenario. Viruses 8:177

    PubMed Central  Google Scholar 

  4. Bhattacharyya-Pakrasi M, Peng J, Elmer JS, Laco G, Shen P, Kaniewska MB, Kononowicz H, Wen F, Hodges TK, Beachy RN (1993) Specificity of a promoter from the rice tungro bacilliform virus for expression in phloem tissues. Plant J 4(1):71–79

    CAS  PubMed  Google Scholar 

  5. Bhattacharyya S, Dey N, Maiti IB (2002) Analysis of cis-sequence of subgenomic transcript promoter from the Figwort mosaic virus and comparison of promoter activity with the cauliflower mosaic virus promoters in monocot and dicot cells. Virus Res 90(1–2):47–62

    PubMed  Google Scholar 

  6. Borah BK, Sharma S, Kant R, Johnson AMA, Saigopal DVR, Dasgupta I (2013) Bacilliform DNA-containing plant viruses in the tropics: commonalities within a genetically diverse group. Mol Plant Pathol 14:759–771

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brough CL, Sunter G, Gardiner WE, Bisaro DM (1992) Kinetics of tomato golden mosaic virus DNA replication and coat protein promoter activity in Nicotiana tabacum protoplasts. Virology 187:1–9

    CAS  PubMed  Google Scholar 

  8. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  9. Covey SN, Lomonossoff GP, Hull R (1981) Characterisation of cauliflower mosaic virus DNA sequences which encode major polyadenylated transcripts. Nucleic Acids Res 9:6735–6747

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Grunennvaldt RL, Degenhardt-Goldbach J, Gerhardt IR, Quoirin M (2015) Promoters used in genetic transformation of plants. Res J Biol Sci 10:1–9

    Google Scholar 

  11. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hohn T, Fütterer J (1992) Transcriptional and translational control of gene expression in cauliflower mosaic virus. Curr Opin Genet Dev 2:90–96

    CAS  PubMed  Google Scholar 

  13. Hull R, Covey SN (1983) Replication of cauliflower mosaic virus DNA. Sci Prog 68:403–422

    CAS  Google Scholar 

  14. James AP, Geijskes RJ, Dale JL, Harding RM (2011) Molecular characterisation of six badnavirus species associated with leaf streak disease of banana in East Africa. Ann Appl Biol 158:346–353

    CAS  Google Scholar 

  15. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lam E, Chua NH (1989) ASF-2: a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell 1:1147–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lan P, Tian T, Pu L, Rao W, Li F, Li R (2019) Characterization and detection of a new badnavirus infecting Epiphyllum spp. Arch Virol 164:1837–1841

    CAS  PubMed  Google Scholar 

  18. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lewin B (1997) Genes VI. Oxford University Press, Oxford

    Google Scholar 

  20. Lu Q-Y, Yu J, Cheng Y-Y, Sun X, Yang L (2020) V3 protein encoded by mulberry crinkle leaf virus acts as a pathogenicity determinant in Nicotiana benthamiana. Eur J Plant Pathol 157:141–149

    CAS  Google Scholar 

  21. Medberry SL, Lockhart BE, Olszewski NE (1992) The Commelina yellow mottle virus promoter is a strong promoter in vascular and reproductive tissues. Plant Cell 4:185–192

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  23. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    CAS  PubMed  Google Scholar 

  24. Pooggin MM, Fütterer J, Skryabin KG, Hohn T (1999) A short open reading frame terminating in front of a stable hairpin is the conserved feature in pregenomic RNA leaders of plant pararetroviruses. J Gen Virol 80(8):2217–2228

    CAS  PubMed  Google Scholar 

  25. Rubio-Somoza I, Martinez M, Abraham Z, Diaz I, Carbonero P (2006) Ternary complex formation between HvMYBS3 and other factors involved in transcriptional control in barley seeds. Plant J 47:269–281

    CAS  PubMed  Google Scholar 

  26. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  27. Sanger M, Daubert S, Goodman RM (1990) Characteristics of a strong promoter from figwort mosaic virus: comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter. Plant Mol Biol 14:433–443

    CAS  PubMed  Google Scholar 

  28. Schenk PM, Sagi L, Remans T, Dietzgen RG, Bernard MJ, Graham MW, Manners JM (1999) A promoter from sugarcane bacilliform badnavirus drives transgene expression in banana and other monocot and dicot plants. Plant Mol Biol 39:1221–1230

    CAS  PubMed  Google Scholar 

  29. Schenk PM, Remans T, Sagi L, Elliott AR, Dietzgen RG, Swennen R, Ebert PR, Grof CP, Manners JM (2001) Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol 47:399–412

    CAS  PubMed  Google Scholar 

  30. Shirsat A, Wilford N, Croy R, Boulter D (1989) Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet MGG 215:326–331

    CAS  PubMed  Google Scholar 

  31. Terada R, Shimamoto K (1990) Expression of CaMV35S-GUS gene in transgenic rice plants. Mol Gen Genet MGG 220:389–392

    CAS  Google Scholar 

  32. Teycheney PY, Geering ADW, Dasgupta I, Hull R, Kreuze JF, Lockhart B, Muller E, Olszewski N, Pappu H, Pooggin MM, Richert-Poggeler KR, Schoelz JE, Seal S, Stavolone L, Umber M, Report Consortium I (2020) ICTV virus taxonomy profile: caulimoviridae. J Gen Virol 101:1025–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tzafrir I, Torbert KA, Lockhart BE, Somers DA, Olszewski NE (1998) The sugarcane bacilliform badnavirus promoter is active in both monocots and dicots. Plant Mol Biol 38:347–356

    CAS  PubMed  Google Scholar 

  34. Verdaguer B, de Kochko A, Beachy RN, Fauquet C (1996) Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV) promoter. Plant Mol Biol 31:1129–1139

    CAS  PubMed  Google Scholar 

  35. Wanapu C, Shinmyo A (1996) cis-regulatory elements of the peroxidase gene in Arabidopsis thaliana involved in root-specific expression and responsiveness to high-salt stress. Ann N Y Acad Sci 782:107–114

    CAS  PubMed  Google Scholar 

  36. Wijayasekara D, Hoyt P, Gimondo A, Dunn B, Thapa A, Jones H, Verchot J (2018) Molecular characterization of two badnavirus genomes associated with Canna yellow mottle disease. Virus Res 243:19–24

    CAS  PubMed  Google Scholar 

  37. Xie Y, Liu Y, Meng M, Chen L, Zhu Z (2003) Isolation and identification of a super strong plant promoter from cotton leaf curl Multan virus. Plant Mol Biol 53:1–14

    CAS  PubMed  Google Scholar 

  38. Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17:209–214

    CAS  PubMed  Google Scholar 

  39. Yang IC, Iommarini JP, Becker DK, Hafner GJ, Dale JL, Harding RM (2003) A promoter derived from taro bacilliform badnavirus drives strong expression in transgenic banana and tobacco plants. Plant Cell Rep 21:1199–1206

    CAS  PubMed  Google Scholar 

  40. Yin Y, Beachy RN (1995) The regulatory regions of the rice tungro bacilliform virus promoter and interacting nuclear factors in rice (Oryza sativa L.). Plant J 7:969–980

    CAS  PubMed  Google Scholar 

  41. Zhang Y, Angel CA, Valdes S, Qiu W, Schoelz JE (2015) Characterization of the promoter of Grapevine vein clearing virus. J Gen Virol 96:165–169

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (no. 18KJA210001) and the Doctor Startup Fund Program of Jiangsu University of Science and Technology (no. 1732931601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-You Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Elvira Fiallo-Olivé.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The nucleotide sequence reported in this article has been submitted to the GenBank database under accession number MW052244.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, W.K., Ma, Y., Yu, J. et al. Characterization of a strong constitutive promoter from paper mulberry vein banding virus. Arch Virol 167, 163–170 (2022). https://doi.org/10.1007/s00705-021-05310-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05310-9

Navigation