Skip to main content

Advertisement

Log in

Easily purified baculovirus/insect-system-expressed recombinant hepatitis B virus surface antigen fused to the N- or C-terminus of polyhedrin

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Baculoviruses are circular double-stranded DNA viruses that infect insects and are widely used as the baculoviral expression vectors (BEVs), which provide a eukaryotic milieu for heterologous expression. The most frequently used vector is based on Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, purification of recombinant proteins produced using BEVs is laborious, time-consuming, and often expensive. Numerous strategies have been explored to facilitate purification of heterologous proteins, such as fusion with occlusion body (OBs)-forming proteins like polyhedrin (Polh). Baculoviruses produce OBs in the late stages of infection to protect the virion in the cellular environment, and the main protein responsible for OB formation is Polh. In this study, we investigated the effect of fusing the gene that encodes the surface antigen (S-HBsAg) of hepatitis B virus (HBV) to either the N- or C-terminus of the AcMNPV Polh. The production of recombinant viruses and recombinant proteins was confirmed, and the ability to form chimeric S-HBsAg-containing OBs was accessed by light and scanning electron microscopy of infected cells. The fusion was found to affect the shape and size of the OBs when compared to wild-type OBs, with the N-terminal fusion producing less-amorphous OBs than the C-terminal construct. In addition, the N-terminal construct gave higher levels of expression than the C-terminal construct. Quantitative and qualitative immunoassays with human serum or plasma antibodies against HBsAg showed that the two forms of the antigen reacted differently. Although both reacted with the antibody, the N-terminal fusion protein reacted with more sensitivity (2.27-fold) and is therefore more suitable for quantitative assays than the C-terminal version. In summary, the BEVs represents a promising tool for the production of reagents for the diagnosis of HBV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van Oers MM, Pijlman GP, Vlak JM (2015) Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96:6–23. https://doi.org/10.1099/vir.0.067108-0

    Article  CAS  PubMed  Google Scholar 

  2. Vasques RM, Correa RFT, da Silva LA et al (2019) Assembly of tomato blistering mosaic virus-like particles using a baculovirus expression vector system. Arch Virol. https://doi.org/10.1007/s00705-019-04262-5

    Article  PubMed  Google Scholar 

  3. Ardisson-Araújo DMP, Rocha JR, Da Costa MHO et al (2013) A baculovirus-mediated strategy for full-length plant virus coat protein expression and purification. Virol J. https://doi.org/10.1186/1743-422X-10-262

    Article  PubMed  PubMed Central  Google Scholar 

  4. Molinari P, Crespo MI, Gravisaco MJ et al (2011) Baculovirus capsid display potentiates OVA cytotoxic and innate immune responses. PLoS ONE. https://doi.org/10.1371/journal.pone.0024108

    Article  PubMed  PubMed Central  Google Scholar 

  5. Molinari P, Molina GN, Tavarone E et al (2018) Baculovirus capsid display in vaccination schemes: effect of a previous immunity against the vector on the cytotoxic response to delivered antigens. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-018-9368-8

    Article  PubMed  Google Scholar 

  6. Chaves LCS, Ribeiro BM, Blissard GW (2018) Production of GP64-free virus-like particles from baculovirus-infected insect cells. J Gen Virol 99:265–274. https://doi.org/10.1099/jgv.0.001002

    Article  CAS  PubMed  Google Scholar 

  7. Harrison RL, Hoover K (2012) Chapter 4: Baculoviruses and other occluded insect viruses. In: Vega FE, Kaya HK (eds) Insect Pathology. 2nd edn. Academic Press, London, pp 73–131

  8. Slack J, Arif BM (2006) The baculoviruses occlusion-derived virus: virion structure and function. Adv Virus Res 69:99–165

    Article  Google Scholar 

  9. Je YH, Jin BR, Park HW et al (2003) Baculovirus expression vectors that incorporate the foreign protein into viral occlusion bodies. Biotechniques 34:81–87. https://doi.org/10.2144/03341st04

    Article  CAS  PubMed  Google Scholar 

  10. López MG, Pallarés HM, Alfonso V et al (2018) Novel biotechnological platform based on baculovirus occlusion bodies carrying Babesia bovis small antigenic peptides for the design of a diagnostic enzyme-linked immunosorbent assay (ELISA). Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-017-8662-1

    Article  PubMed  Google Scholar 

  11. O’Reilly DR, Miller LK, Luckow VA (1992) Baculovirus expression vector: a laboratory manual. WH Freeman and Company, New York

    Google Scholar 

  12. Jarvis DL, Bohlmeyer DA, Garcia A (1991) Requirements for nuclear localization and supramolecular assembly of a baculovirus polyhedrin protein. Virology. https://doi.org/10.1016/0042-6822(91)90551-L

    Article  PubMed  Google Scholar 

  13. Coulibaly F, Chiu E, Gutmann S et al (2009) The atomic structure of baculovirus polyhedra reveals the independent emergence of infectious crystals in DNA and RNA viruses. Proc Natl Acad Sci USA 106:22205–22210. https://doi.org/10.1073/pnas.0910686106

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ji X, Sutton G, Evans G et al (2010) How baculovirus polyhedra fit square pegs into round holes to robustly package viruses. EMBO J. https://doi.org/10.1038/emboj.2009.352

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ribeiro BM, Generino APM, Acacio CNL et al (2009) Characterization of a new Autographa californica multiple nucleopolyhedrovirus (AcMNPV) polyhedra mutant. Virus Res 140:1–7. https://doi.org/10.1016/j.virusres.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  16. López MG, Diez M, Alfonso V, Taboga O (2018) Biotechnological applications of occlusion bodies of Baculoviruses. Appl Microbiol Biotechnol 102:6765–6774

    Article  Google Scholar 

  17. Silva LA, Ardisson-Araújo DMP, Morgado FS et al (2019) Cell-line-dependent crystal morphology and sublocalization of the Thyrinteina arnobia cypovirus polyhedrin expressed from a recombinant baculovirus. Arch Virol 164:1677–1682. https://doi.org/10.1007/s00705-019-04214-z

    Article  CAS  PubMed  Google Scholar 

  18. van Oers M, Vlak J (2007) Baculovirus genomics. Curr Drug Targets. https://doi.org/10.2174/138945007782151333

    Article  PubMed  Google Scholar 

  19. Lacey LA, Grzywacz D, Shapiro-Ilan DI et al (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41. https://doi.org/10.1016/j.jip.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  20. Je Y-H, Jin B-R, Roh J-Y et al (2000) Construction of a novel baculovirus Autographa californica nuclear polyhedrosis virus producing the fluorescent polyhedra. Int J Ind Entomol 1:19–23

    Google Scholar 

  21. Sampieri A, Luz-Madrigal A, Zepeda J, Vaca L (2015) Identification of fragments from Autographa Californica polyhedrin protein essential for self-aggregation and exogenous protein incorporation. BMC Biochem. https://doi.org/10.1186/s12858-015-0034-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Blumberg BS, Alter HJ, Visnich S (1965) A “new” antigen in leukemia sera. JAMA J Am Med Assoc 191:541–546. https://doi.org/10.1001/jama.1965.03080070025007

    Article  CAS  Google Scholar 

  23. Ministério da Saúde do Brasil (2018) Boletim Epidemiológico 11. Bol Epidemiológico da Secr Vigilância em Saúde, Ministério da Saúde

  24. Seto WK, Lo YR, Pawlotsky JM, Yuen MF (2018) Chronic hepatitis B virus infection. Lancet 392:2313–2324

    Article  Google Scholar 

  25. Podlaha O, Wu G, Downie B et al (2019) Genomic modeling of hepatitis B virus integration frequency in the human genome. PLoS ONE. https://doi.org/10.1371/journal.pone.0220376

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wilkins T, Zimmerman D, Schade RR (2010) Hepatitis B: diagnosis and treatment. Am Fam Physician. https://doi.org/10.1097/00007611-199709000-00001

    Article  PubMed  Google Scholar 

  27. Liu C, Chang L, Jia T et al (2017) Real-time PCR assays for hepatitis B virus DNA quantification may require two different targets. Virol J. https://doi.org/10.1186/s12985-017-0759-8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Granados RR, Guoxun L, Derksen ACG, McKenna KA (1994) A new insect cell line from Trichoplusia ni (BTI-Tn-5B1-4) susceptible to Trichoplusia ni single enveloped nuclear polyhedrosis virus. J Invertebr Pathol 64:260–266. https://doi.org/10.1016/S0022-2011(94)90400-6

    Article  Google Scholar 

  29. Ayres MD, Howard SC, Lopez-Ferber M et al (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology. https://doi.org/10.1006/viro.1994.1380

    Article  PubMed  Google Scholar 

  30. O’Reilly DR, Miller LK, Luckow VA (1992) Baculovirus expression vectors. A laboratory manual. Freeman and Company, New York

    Google Scholar 

  31. Greene GL, Leppla NC, Dickerson WA (1976) Velvetbean Caterpillar: a rearing procedure and artificial medium123. J Econ Entomol 69:487–488. https://doi.org/10.1093/jee/69.4.487

    Article  Google Scholar 

  32. Attanasio R, Lanford RE, Dilley D et al (1991) Immunogenicity of hepatitis B surface antigen derived from the baculovirus expression vector system: a mouse potency study. Biologicals. https://doi.org/10.1016/S1045-1056(05)80024-7

    Article  PubMed  Google Scholar 

  33. Lanford RE, Luckow V, Kennedy RC et al (1989) Expression and characterization of hepatitis B virus surface antigen polypeptides in insect cells with a baculovirus expression system. J Virol 63:1549–1557

    Article  CAS  Google Scholar 

  34. Mirian M, Taghizadeh R, Khanahmad H et al (2016) Exposition of hepatitis B surface antigen (HBsAg) on the surface of HEK293T cell and evaluation of its expression. Res Pharm Sci 11:366–373. https://doi.org/10.4103/1735-5362.192485

    Article  PubMed  PubMed Central  Google Scholar 

  35. Murayama A, Momose H, Yamada N et al (2019) Evaluation of in vitro screening and diagnostic kits for hepatitis B virus infection. J Clin Virol 117:37–42. https://doi.org/10.1016/j.jcv.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  36. https://www.who.int/diagnostics_laboratory/evaluations/hepb/161125_who_performance_criteria_hbsag_ivd.pdf?ua=1. Accessed 25 Aug 2020

  37. Acceptance Criteria for HBsAg IVDs Performance Evaluation Acceptance Criteria for HBsAg In vitro diagnostics in the context of WHO Prequalification

Download references

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant number 428799/2018-3 and 305468/2019-7), Coordenação de Aperfeiçoamento de Pessoal de nível Superior (CAPES/PROEX, grant number 23038.004173/2019-93) and Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF, grant number 193.001532/2016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bergmann M. Ribeiro or Daniel M. P. Ardisson-Araújo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Michael A. Purdy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

705_2021_5305_MOESM1_ESM.tif

Supplementary file1 Supplementary Fig. S1 Carboxy- (CT) and amino-terminal (NT) versions of S-HBsAg fused separately to AcMNPV polyhedrin. (A) Schematic representation of the modified polh gene cloned into pFastBac1 (pFB1) to generate pFB1-S-HBsAg (CT) and pFB1-S-HBsAg (NT). (B) Tn5B cells at 72 h after infection with the respective second-passage virus stock at an MOI of 5. The photographs show cells infected with vAc-S-HBsAg (CT) and vAc-S-HBsAg (NT). The insets show details of infected cells with an apparently amorphous mass accumulating in the infected cell. (TIF 14671 KB)

705_2021_5305_MOESM2_ESM.tif

Supplementary file2 Supplementary Fig. S2 PCR analysis of the S-HBsAg gene fused to 6xHis-Polh (NT) and Polh-6xHis (CT) after sequential passages in a Trichoplusia ni-derived cell line (Tn5B). PCR was carried out using virus genomic DNA recovered from the infected cell supernatant. M, marker 1 kbp; 1, first passage of vAc-S-HBsAg (NT); 2, fourth passage of vAc-S-HBsAg (NT); 3, first passage of vAc-S-HBsAg (CT); 4, fourth passage of vAc-S-HBsAg (CT); +, positive control (S-HBsAg gene). The red arrow indicates the expected size of the amplicon (742 bp). (TIF 2136 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.A., Camargo, B.R., Araújo, A.C. et al. Easily purified baculovirus/insect-system-expressed recombinant hepatitis B virus surface antigen fused to the N- or C-terminus of polyhedrin. Arch Virol 167, 345–354 (2022). https://doi.org/10.1007/s00705-021-05305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05305-6

Navigation