Skip to main content

Advertisement

Log in

Virus-induced FoxO factor facilitates replication of human cytomegalovirus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Recently, it was reported that the forkhead box O (FoxO) transcription factor promotes human cytomegalovirus (HCMV) replication via direct binding to the promoters of the major immediate-early (MIE) genes, but how the FoxO factor impacts HCMV replication remains unknown. Here, it is reported that FoxO1 expression is strongly induced by HCMV infection in cells of fibroblast origin. Suppression of the FoxO1 gene by specific RNA interference significantly inhibited HCMV growth and replication, but viral DNA synthesis was not affected considerably. Interestingly, depletion or overexpression of FoxO1 had a significant effect on the expression of viral early/late transcripts. FoxO1 was found to colocalize with the pUL44 protein subunit of viral replication compartments without direct association with DNA. This study highlights how FoxO enhances HCMV gene transcription and viral replication to promote infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HCMV:

Human cytomegalovirus

IE:

Immediate early gene

E:

Early gene

EL:

Early-late gene

L:

Late gene

FoxO:

Forkhead box O transcription factor

BAC:

Bacterial artificial chromosome

vRC:

Viral replication compartment

EBV:

Epstein-Barr virus

HCV:

Hepatitis C virus

FoxO1–ADA:

FoxO1 containing T24A/S253D/S316A mutations

GFP:

Green fluorescent protein

ChIP:

Chromatin immunoprecipitation

IGFBP1:

Insulin-like growth factor binding protein 1

HEK293T:

Human embryonic kidney 293 T cell

MRC5:

Medical Research Council cell strain 5 (human embryonic lung fibroblasts

References

  1. Mocarski ES Jr, Shenk T, Pass RF (2007) Cytomegaloviruses. Fields Virol II:2701–2772

    Google Scholar 

  2. Crumpacker CS (2015) Cytomegalovirus (CMV). In: Bennett J, Dolin R, Blaser M (eds) Bennett’s principles and practice of infectious diseases, 8th edn. Saunders, New York, pp 1738-1753.e4

    Google Scholar 

  3. Fehr AR, Yu D (2013) Control the host cell cycle: viral regulation of the anaphase-promoting complex. J Virol 87:8818–8825

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sanchez V, Spector DH (2008) Subversion of cell cycle regulatory pathways. Curr Top Microbiol Immunol 325:243–262

    CAS  PubMed  Google Scholar 

  5. Yu Y, Pierciey FJ Jr, Maguire TG, Alwine JC (2013) PKR-like endoplasmic reticulum kinase is necessary for lipogenic activation during HCMV infection. PLoS Pathog 9:e1003266

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu Y, Maguire TG, Alwine JC (2014) ChREBP, a glucose-responsive transcriptional factor, enhances glucose metabolism to support biosynthesis in human cytomegalovirus-infected cells. Proc Natl Acad Sci USA 111:1951–1956

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu Y, Clippinger AJ, Alwine JC (2011) Viral effects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection. Trends Microbiol 19:360–367

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA, Shenk T, Rabinowitz JD (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26:1179–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD (2006) Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2:e132

    PubMed  PubMed Central  Google Scholar 

  10. DeVito SR, Ortiz-Riano E, Martinez-Sobrido L, Munger J (2014) Cytomegalovirus-mediated activation of pyrimidine biosynthesis drives UDP-sugar synthesis to support viral protein glycosylation. Proc Natl Acad Sci USA 111:18019–18024

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Buchkovich NJ, Yu Y, Zampieri CA, Alwine JC (2008) The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K-Akt-mTOR signalling pathway. Nat Rev Microbiol 6:266–275

    PubMed  PubMed Central  Google Scholar 

  12. Clippinger AJ, Alwine JC (2012) Dynein mediates the localization and activation of mTOR in normal and human cytomegalovirus-infected cells. Genes Dev 26:2015–2026

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Clippinger AJ, Maguire TG, Alwine JC (2011) Human cytomegalovirus infection maintains mTOR activity and its perinuclear localization during amino acid deprivation. J Virol 85:9369–9376

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Clippinger AJ, Maguire TG, Alwine JC (2011) The changing role of mTOR kinase in the maintenance of protein synthesis during human cytomegalovirus infection. J Virol 85:3930–3939

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tilton C, Clippinger AJ, Maguire T, Alwine JC (2011) Human cytomegalovirus induces multiple means to combat reactive oxygen species. J Virol 85:12585–12593

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Alwine JC (2008) Modulation of host cell stress responses by human cytomegalovirus. Curr Top Microbiol Immunol 325:263–279

    CAS  PubMed  Google Scholar 

  17. Qian Z, Xuan B, Gualberto N, Yu D (2011) The human cytomegalovirus protein pUL38 suppresses endoplasmic reticulum stress-mediated cell death independently of its ability to induce mTORC1 activation. J Virol 85:9103–9113

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Terhune S, Torigoi E, Moorman N, Silva M, Qian Z, Shenk T, Yu D (2007) Human cytomegalovirus UL38 protein blocks apoptosis. J Virol 81:3109–3123

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Eijkelenboom A, Burgering BM (2013) FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14:83–97

    CAS  PubMed  Google Scholar 

  20. Lam EW, Brosens JJ, Gomes AR, Koo CY (2013) Forkhead box proteins: tuning forks for transcriptional harmony. Nat Rev Cancer 13:482–495

    CAS  PubMed  Google Scholar 

  21. Webb AE, Kundaje A, Brunet A (2016) Characterization of the direct targets of FOXO transcription factors throughout evolution. Aging Cell 15(4):673–685

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tzivion G, Dobson M, Ramakrishnan G (2011) FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 1813:1938–1945

    CAS  PubMed  Google Scholar 

  23. Hay N (2011) Interplay between FOXO, TOR, and Akt. Biochem Biophys Acta 1813(11):1965–1970

    CAS  PubMed  Google Scholar 

  24. Essers MA, Weijzen S, de Vries-Smits AM, Saarloos I, de Ruiter ND, Bos JL, Burgering BM (2004) FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23:4802–4812

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yuan Z, Lehtinen MK, Merlo P, Villén J, Gygi S, Bonni A (2009) Regulation of neuronal cell death by MST1-FOXO1 signaling. J Biol Chem 284(17):11285–11292

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EBE, DiBacco S, de la Iglesia N, Gygi SP, Blackwell TK, Bonni A (2006) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125:987–1001

    CAS  PubMed  Google Scholar 

  27. Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27:2276–2288

    CAS  PubMed  Google Scholar 

  28. Munoz-Fontela C, Marcos-Villar L, Gallego P, Arroyo J, Da Costa M, Pomeranz KM, Lam EW, Rivas C (2007) Latent protein LANA2 from Kaposi’s sarcoma-associated herpesvirus interacts with 14-3-3 proteins and inhibits FOXO3a transcription factor. J Virol 81:1511–1516

    CAS  PubMed  Google Scholar 

  29. Chen YR, Liu MT, Chang YT, Wu CC, Hu CY, Chen JY (2008) Epstein-Barr virus latent membrane protein 1 represses DNA repair through the PI3K/Akt/FOXO3a pathway in human epithelial cells. J Virol 82:8124–8137

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Deng L, Shoji I, Ogawa W, Kaneda S, Soga T, Jiang DP, Ide YH, Hotta H (2011) Hepatitis C virus infection promotes hepatic gluconeogenesis through an NS5A-mediated, FoxO1-dependent pathway. J Virol 85:8556–8568

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Oteiza A, Mechti N (2011) The human T-cell leukemia virus type 1 oncoprotein tax controls forkhead box O4 activity through degradation by the proteasome. J Virol 85:6480–6491

    CAS  PubMed  PubMed Central  Google Scholar 

  32. van Grevenynghe J, Procopio FA, He Z, Chomont N, Riou C, Zhang Y et al (2008) Transcription factor FOXO3a controls the persistence of memory CD4(+) T cells during HIV infection. Nat Med 14:266–274

    PubMed  Google Scholar 

  33. Cui M, Huang Y, Zhao Y, Zheng J (2009) New insights for FOXO and cell-fate decision in HIV infection and HIV associated neurocognitive disorder. Adv Exp Med Biol 665:143–159

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kino T, De Martino MU, Charmandari E, Ichijo T, Outas T, Chrousos GP (2005) HIV-1 accessory protein Vpr inhibits the effect of insulin on the FoxO subfamily of forkhead transcription factors by interfering with their binding to 14-3-3 proteins: potential clinical implications regarding the insulin resistance of HIV-1-infected patients. Diabetes 54:23–31

    CAS  PubMed  Google Scholar 

  35. Wilk A, Urbanska K, Yang S, Wang JY, Amini S, Del Valle L, Peruzzi F, Meggs L, Reiss K (2011) Insulin-like growth factor-I-forkhead box O transcription factor 3a counteracts high glucose/tumor necrosis factor-alpha-mediated neuronal damage: implications for human immunodeficiency virus encephalitis. J Neurosci Res 89:183–198

    CAS  PubMed  Google Scholar 

  36. Zhang S, Liu L, Wang R, Tuo H, Guo Y, Yi L, Wang D, Wang J (2013) MicroRNA-217 promotes the angiogenesis of human cytomegalovirus-infected endothelial cells through downregulation of SIRT1 and FOXO3A. PLoS ONE 8:e83620

    PubMed  PubMed Central  Google Scholar 

  37. Adamson CS, Nevels MM (2020) Bright and early: inhibiting human cytomegalovirus by targeting major immediate-early gene expression or protein function. Viruses 12(1):110. https://doi.org/10.3390/v12010110

    Article  CAS  PubMed Central  Google Scholar 

  38. Hale AE, Collins-McMillen D, Lenarcic EM et al (2020) FOXO transcription factors activate alternative major immediate-early promoters to induce human cytomegalovirus reactivation. PNAS 117(31):18764–18770

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Harada Y, Elly C, Ying G, Paik JH, DePinho RA, Liu YC (2010) Transcription factors FoxO3a and FoxO1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med 207:1381–1391

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Qian Z, Leung-Pineda V, Xuan B, Piwnica-Worms H, Yu D (2010) Human cytomegalovirus protein pUL117 tar (Baar MP, 2017) gets the mini-chromosome maintenance complex and suppresses cellular DNA synthesis. PLoS Pathog 6:e1000814

    PubMed  PubMed Central  Google Scholar 

  41. Everett RD, Boutell C, McNair C, Grant L, Orr A (2010) Comparison of the biological and biochemical activities of several members of the alphaherpesvirus ICP0 family of proteins. J Virol 84:3476–3487

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Boussif O et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fehr AR, Gualberto NC, Savaryn JP, Terhune SS, Yu D (2012) Proteasome-dependent disruption of the E3 ubiquitin ligase anaphase-promoting complex by HCMV protein pUL21a. PLoS Pathog 8:e1002789

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakae J, Kitamura T, Silver DL, Accili D (2001) The forkhead transcription factor FoxO1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest 108:1359–1367

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu D, Smith GA, Enquist LW, Shenk T (2002) Construction of a self-excisable bacterial artificial chromosome containing the human cytomegalovirus genome and mutagenesis of the diploid TRL/IRL13 gene. J Virol 76:2316–2328

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Xuan B, Qian Z, Torigoi E, Yu D (2009) Human cytomegalovirus protein pUL38 induces ATF4 expression, inhibits persistent JNK phosphorylation, and suppresses endoplasmic reticulum stress-induced cell death. J Virol 83:3463–3474

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nelson J, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1:179–185

    CAS  PubMed  Google Scholar 

  48. Yalley A, Schill D, Hatta M, Johnson N, Cirillo LA (2016) Loss of interdependent binding by the FoxO1 and FoxA1/A2 forkhead transcription factors culminates in perturbation of active chromatin marks and binding of transcriptional regulators at insulin-sensitive genes. J Biol Chem 291:8848–8861

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakamura M, Takakura M, Fujii R, Maida Y, Bono Y, Mizumoto Y, Zhang X, Kiyono T, Kyo S (2013) The PRB-dependent FOXO1/IGFBP-1 axis is essential for progestin to inhibit endometrial epithelial growth. Cancer Lett 336(1):68–75

    CAS  PubMed  Google Scholar 

  50. Hatta M, Cirillo LA (2007) Chromatin opening and stable perturbation of core histone:DNA contacts by FoxO1. J Biol Chem 282(49):35583–35593

    CAS  PubMed  Google Scholar 

  51. Schill D, Nord J, Cirillo LA (2019) FoxO1 and FoxA1/2 form a complex on DNA and cooperate to open chromatin at insulin-regulated genes FoxO1 and FoxA1/2 form a complex on DNA and cooperate to open chromatin at insulin-regulated genes. Biochem Cell Biol 97(2):118–129

    CAS  PubMed  Google Scholar 

  52. Perng YC, Qian Z, Fehr AR, Xuan B, Yu D (2011) The human cytomegalovirus gene UL79 is required for the accumulation of late viral transcripts. J Virol 85:4841–4852

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Quinlan MP, Chen LB, Knipe DM (1984) The intranuclear location of a herpes simplex virus DNA-binding protein is determined by the status of viral DNA replication. Cell 36:857–868

    CAS  PubMed  Google Scholar 

  54. Penfold ME, Mocarski ES (1997) Formation of cytomegalovirus DNA replication compartments defined by localization of viral proteins and DNA synthesis. Virology 239:46–61

    CAS  PubMed  Google Scholar 

  55. Taylor TJ, Knipe DM (2004) Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J Virol 78:5856–5866

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Qian Z, Xuan B, Hong TT, Yu D (2008) The full-length protein encoded by human cytomegalovirus gene UL117 is required for the proper maturation of viral replication compartments. J Virol 82:3452–3465

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Isomura H, Stinski MF, Kudoh A et al (2007) The late promoter of the human cytomegalovirus viral DNA polymerase processivity factor has an impact on delayed early and late viral gene products but not on viral DNA synthesis. J Virol 81(12):6197–6206

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Isomura H, Stinski MF, Kudoh A, Murata T, Nakayama S, Sato Y, Iwahori S, Tsurumi T (2008) Noncanonical TATA sequence in the UL44 late promoter of human cytomegalovirus is required for the accumulation of late viral transcripts. J Virol 82(4):1638–1646

    CAS  PubMed  Google Scholar 

  59. Nevels M, Paulus C, Shenk T (2004) Human cytomegalovirus immediate-early 1 protein facilitates viral replication by antagonizing histone deacetylation. PNAS 101(49):17234–17239

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I first want to thank Shaowu Huang for his generous help in this report. Furthermore, I want to extend my thanks to Dr. Yongjun Yu (University of Pennsylvania) and Dr. Yi-Chieh Perng (Washington University in St. Louis) for reading the manuscript critically. I thank all of the Herpesvirus and Molecular Virology Research Unit members for helpful discussions, Dr. Thomas Shenk for antibodies, Dr. Jay Nelson for IE1/2 antibody, and Roger Everett (University of Glasgow) for the pLKO-based lentiviral expression system.

Funding

This work was supported by a CAS-TWAS Fellowship. The funders had no role in study design, data collection, analysis, or manuscript submission.

Author information

Authors and Affiliations

Authors

Contributions

SS performed experiments and wrote the manuscript, and he is the corresponding author.

Corresponding author

Correspondence to Sirwan Sleman.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Communicated by Graciela Andrei.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1949 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sleman, S. Virus-induced FoxO factor facilitates replication of human cytomegalovirus. Arch Virol 167, 109–121 (2022). https://doi.org/10.1007/s00705-021-05279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05279-5

Navigation