Skip to main content

Advertisement

Log in

Phenotypic and genotypic characterization of the new Bacillus cereus phage SWEP1

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A new Bacillus cereus phage, SWEP1, was isolated from black soil. The host lysis activity of phage SWEP1 has a relatively short latent time (20 min) and a small burst size of 83 PFU. The genome of SWEP1 consists of 162,461 bp with 37.77% G+C content. The phage encodes 278 predicted proteins, 103 of which were assigned functionally. No tRNA genes were found. Comparative genomics analysis indicated that SWEP1 is related to Bacillus phage B4 (86.91% identity, 90% query coverage). Phenotypic and genotypic characterization suggested that SWEP1 is a new member of a new species in the genus Bequatrovirus, family Herelleviridae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Kim SK, Kim K-P, Jang SS, Shin EM, Kim M-J, Oh S, Ryu S (2009) Prevalence and toxigenic profiles of Bacillus cereus isolated from dried red peppers, rice, and Sunsik in Korea. J Food Prot 72(3):578–582. https://doi.org/10.4315/0362-028X-72.3.578

    Article  PubMed  Google Scholar 

  2. Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23(2):382–398. https://doi.org/10.1128/CMR.00073-09

    Article  PubMed  PubMed Central  Google Scholar 

  3. Granum PE, Lund T (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157:223–228. https://doi.org/10.1111/j.1574-6968.1997.tb12776.x

    Article  CAS  PubMed  Google Scholar 

  4. Klumpp J, Schmuki M, Sozhamannan S, Beyer W, Fouts DE, Bernbach V, Calendar R, Loessner M (2014) The odd one out: Bacillus ACT bacteriophage CP-51 exhibits unusual properties compared to related Spounavirinae W.Ph. and Bastille. Virology 462–463L:299–308. https://doi.org/10.1016/j.virol.2014.06.012

    Article  CAS  Google Scholar 

  5. Erill I, Caruso SM (2016) Genome sequence of Bacillus cereus group phage SalinJah. Genome Announc. https://doi.org/10.1128/genomeA.00953-16

    Article  PubMed  PubMed Central  Google Scholar 

  6. Erill I, Caruso SM (2017) Bacillus cereus group bacteriophage Flapjack genome sequence. Genome Announc 5(31):e00700-e717. https://doi.org/10.1128/genomeA.00700-17

    Article  PubMed  PubMed Central  Google Scholar 

  7. Erill I, Caruso SM (2015) Complete genome sequence of Bacillus cereus group phage TsarBomba. Genome Announc. https://doi.org/10.1128/genomeA.01178-15

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee JH, Shine H, Son B, Heu S, Ryu S (2013) Characterization and complete genome sequence of a virulent bacteriophage B4 infecting food-borne pathogenic Bacillus cereus. Arch Virol 158(10):2101–2108. https://doi.org/10.1007/s00705-013-1719-2

    Article  CAS  PubMed  Google Scholar 

  9. El-Arabi TF, Griffiths MW, She YM, Villegas A, Lingohr EJ, Kropinski AM (2013) Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group. Virol J 10(1):48. https://doi.org/10.1186/1743-422X-10-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shin H, Bandara N, Shin E, Ryu S, Kin K (2011) Prevalence of Bacillus cereus bacteriophages in fermented foods and characterization of phage JBP901. Res Microbiol 162(8):791–797. https://doi.org/10.1016/j.resmic.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  11. Lee JH, Shin H, Son B, Ryu S (2012) Complete genome sequence of Bacillus cereus bacteriophage BCP78. J Virol 86(1):637–638. https://doi.org/10.1128/JVI.06520-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Monika S, Deividas T, Kotryna K, Rolandas M, Sigitas S, Eugenijus S (2020) Complete genome sequence of Bacillus cereus bacteriophage vB_BceS_KLEB30-3S. Microbiol Resour Announc. https://doi.org/10.1128/MRA.00348-20

    Article  Google Scholar 

  13. Beyer W, Bellan S, Eberle G, Ganz HH, Getz WM et al (2012) Distribution and molecular evolution of Bacillus anthracis genotypes in Namibia. PLoS Negl Trop Dis 6:e1534. https://doi.org/10.1371/journal.pntd.0001534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Na HJ, Kong M, Ryu S (2016) Characterization of LysPBC4, a novel Bacillus cereus-specific endolysin of bacteriophage PBC4. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnw092

    Article  PubMed  Google Scholar 

  15. Kong M, Kim M, Ryu S (2012) Complete genome sequence of Bacillus cereus bacteriophage PBC1. J Virol 86(11):6379–6380. https://doi.org/10.1128/JVI.00706-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klumpp J, Calendar R, Loessner MJ (2010) Complete nucleotide sequence and molecular characterization of Bacillus phage TP21 and its relatedness to other phages with the same name. Viruses 2(4):961–971. https://doi.org/10.3390/v2040961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schuch R, Pelzek AJ, Fazzini MM, Nelson DC, Fischetti VA (2014) Complete genome sequence of Bacillus cereus Sensu Lato bacteriophage Bcp1. Genome Announc. https://doi.org/10.1128/genomeA.00334-14

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sun C, Wang RJ, Su Y, Fu G, Zhao Z et al (2017) Hyphobacterium vulgare gen. nov., sp. nov., a novel alphaproteobacterium isolated from seawater. Int J Syst Evol Microbiol 67(5):1169–1176. https://doi.org/10.1099/ijsem.0.001780

    Article  CAS  PubMed  Google Scholar 

  19. Yoon S-H, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  PubMed  Google Scholar 

  20. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yuan X, Zhang S, Wang J, Li C, Na L et al (2021) Isolation and characterization of a novel Escherichia coli Kayfunavirus phage DY1. Virus Res 293:198274. https://doi.org/10.1186/s12985-019-1241-6

    Article  CAS  PubMed  Google Scholar 

  22. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  23. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxf, Engl) 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  Google Scholar 

  24. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics (Oxf, Engl) 31(10):1674–1676. https://doi.org/10.1093/bioinformatics/btv033

    Article  CAS  Google Scholar 

  26. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44(W1):W16–W21. https://doi.org/10.1093/nar/gkw387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964. https://doi.org/10.1093/nar/25.5.955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kropinski AM, Waddell T, Meng J, Franklin K, Ackermann HW, Ahmed R, Mazzocco A, Yates J, Lingohr EJ, Johnson R (2013) The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5. Virol J 10(1):76. https://doi.org/10.1186/1743-422X-10-76

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bażlekowa-Karaban M, Adamczyk-Popławska M, Kwiatek A (2017) Characterization of Vsr endonucleases from Neisseria meningitidis. Microbiology (Read, Engl) 163(7):1003–1015. https://doi.org/10.1099/mic.0.000492

    Article  CAS  Google Scholar 

  30. Chen X, Gao T, Peng Q, Zhang J, Chai Y, Song F (2018) Novel cell wall hydrolase cwlC from Bacillus thuringiensis is essential for mother cell lysis. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02640-17

    Article  PubMed  PubMed Central  Google Scholar 

  31. Petrovski S, Seviour RJ, Tillett D (2011) Genome sequence and characterization of the Tsukamurella bacteriophage TPA2. Appl Environ Microbiol 77(4):1389–1398. https://doi.org/10.1128/AEM.01938-10

    Article  CAS  PubMed  Google Scholar 

  32. Lhuillier S, Gallopin M, Gilquin B, Brasilès S, Lancelot N et al (2009) Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating. Proc Natl Acad Sci USA 106(21):8507–8512. https://doi.org/10.1073/pnas.0812407106

    Article  PubMed  PubMed Central  Google Scholar 

  33. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics (Oxf, Engl) 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  Google Scholar 

  34. Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, Rubin E, Ivanova NN, Kyrpides NC (2016) Uncovering Earth’s virome. Nature 536(7617):425–430. https://doi.org/10.1038/nature19094

    Article  CAS  PubMed  Google Scholar 

  35. Paez-Espino D, Pavlopoulos GA, Ivanova NN, Kyrpides NC (2017) Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat Protoc 12(8):1673–1682. https://doi.org/10.1038/nprot.2017.063

    Article  CAS  PubMed  Google Scholar 

  36. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank David R. Johnson, Josep Ramoneda, and Elyse Stachler for improving the quality and clarity of this manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (41877412), Project to Attract High Level Foreign Experts (G20190001094), the National Key R&D Program of China (2016YFD0200306), the 2115 Talent Development Program of China Agricultural University and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

CJR, GWC, and GW organized and designed experiments; CJR, XYN, HQW, and ZCM performed experiments; CJR, XYN, GZX analyzed data; and CJR, XYN, GZX, and YL wrote the first draft of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gang Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: T. K. Frey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, C., Niu, X., Xiong, G. et al. Phenotypic and genotypic characterization of the new Bacillus cereus phage SWEP1. Arch Virol 166, 3183–3188 (2021). https://doi.org/10.1007/s00705-021-05222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05222-8

Profiles

  1. Chujin Ruan