Skip to main content

Advertisement

Log in

cGAS–STING-mediated sensing pathways in DNA and RNA virus infections: crosstalk with other sensing pathways

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Viruses cause a variety of diseases in humans and other organisms. The most important defense mechanism against viral infections is initiated when the viral genome is sensed by host proteins, and this results in interferon production and pro-inflammatory cytokine responses. The sensing of the viral genome or its replication intermediates within host cells is mediated by cytosolic proteins. For example, cGAS and IFI16 recognize non-self DNA, and RIG-I and MDA5 recognize non-self RNA. Once these sensors are activated, they trigger a cascade of reactions activating downstream molecules, which eventually results in the transcriptional activation of type I and III interferons, which play a critical role in suppressing viral propagation, either by directly limiting their replication or by inducing host cells to inhibit viral protein synthesis. The immune response against viruses relies solely upon sensing of viral genomes and their downstream signaling molecules. Although DNA and RNA viruses are sensed by distinct classes of receptor proteins, there is a possibility of overlap between the viral DNA and viral RNA sensing mechanisms. In this review, we focus on various host sensing molecules and discuss the associated signaling pathways that are activated in response to different viral infections. We further highlight the possibility of crosstalk between the cGAS-STING and the RIG-I-MAVS pathways to limit viral infections. This comprehensive review delineates the mechanisms by which different viruses evade host cellular responses to sustain within the host cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tan X, Sun L, Chen J, Chen ZJ (2018) Detection of microbial infections through innate immune sensing of nucleic acids. Annu Rev Microbiol 72:447–478

    Article  CAS  PubMed  Google Scholar 

  2. Roh JS, Sohn DH (2018) Damage-associated molecular patterns in inflammatory diseases. Immune Netw 18 (4)

  3. Dempsey A, Bowie AG (2015) Innate immune recognition of DNA: a recent history. Virology 479:146–152

    Article  PubMed  Google Scholar 

  4. Mitchell G, Isberg RR (2017) Innate immunity to intracellular pathogens: balancing microbial elimination and inflammation. Cell Host Microbe 22(2):166–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ma Z, Damania B (2016) The cGAS-STING defense pathway and its counteraction by viruses. Cell Host Microbe 19(2):150–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ni G, Ma Z, Damania B (2018) cGAS and STING: at the intersection of DNA and RNA virus-sensing networks. PLoS Pathog 14(8):e1007148

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann K-K, Schlee M (2006) 5′-triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997

    Article  PubMed  Google Scholar 

  8. Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5(2):190

    Article  CAS  PubMed  Google Scholar 

  9. Pasare C, Medzhitov R (2005) Toll-like receptors: linking innate and adaptive immunity. In: Mechanisms of lymphocyte activation and immune regulation X, pp 11–18

  10. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, Lu Y, Miyagishi M, Kodama T, Honda K (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448(7152):501–505

    Article  CAS  PubMed  Google Scholar 

  11. Ishii KJ, Kawagoe T, Koyama S, Matsui K, Kumar H, Kawai T, Uematsu S, Takeuchi O, Takeshita F, Coban C (2008) TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451(7179):725

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu Y-J (2011) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12(10):959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V (2009) RIG-I-dependent sensing of poly (dA: dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10(10):1065

    Article  CAS  PubMed  Google Scholar 

  14. Chiu Y-H, MacMillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138(3):576–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, Jin T, Latz E, Xiao TS (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11(11):997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Diner BA, Li T, Greco TM, Crow MS, Fuesler JA, Wang J, Cristea IM (2015) The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol Syst Biol 11(2):787

    Article  PubMed  PubMed Central  Google Scholar 

  17. Crow MS, Cristea IM (2017) Human antiviral protein IFIX suppresses viral gene expression during herpes simplex virus 1 (HSV-1) infection and is counteracted by virus-induced proteasomal degradation. Mol Cell Proteomics 16(4 suppl 1):S200–S214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791

    Article  CAS  PubMed  Google Scholar 

  19. Whiteley AT, Eaglesham JB, de Oliveira Mann CC, Morehouse BR, Lowey B, Nieminen EA, Danilchanka O, King DS, Lee AS, Mekalanos JJ (2019) Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567(7747):194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, Hornung V, Hopfner K-P (2013) Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498(7454):332–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mankan AK, Schmidt T, Chauhan D, Goldeck M, Höning K, Gaidt M, Kubarenko AV, Andreeva L, Hopfner KP, Hornung V (2014) Cytosolic RNA: DNA hybrids activate the cGAS–STING axis. EMBO J 33(24):2937–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tao J, Zhang X-W, Jin J, Du X-X, Lian T, Yang J, Zhou X, Jiang Z, Su X-D (2017) Nonspecific DNA binding of cGAS N terminus promotes cGAS activation. J Immunol 198(9):3627–3636

    Article  CAS  PubMed  Google Scholar 

  23. Andreeva L, Hiller B, Kostrewa D, Lässig C, de Oliveira Mann CC, Drexler DJ, Maiser A, Gaidt M, Leonhardt H, Hornung V (2017) cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein–DNA ladders. Nature 549(7672):394

    Article  CAS  PubMed  Google Scholar 

  24. Herzner A-M, Hagmann CA, Goldeck M, Wolter S, Kübler K, Wittmann S, Gramberg T, Andreeva L, Hopfner K-P, Mertens C (2015) Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat Immunol 16(10):1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X-D, Wu J, Gao D, Wang H, Sun L, Chen ZJ (2013) Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341(6152):1390–1394

    Article  CAS  PubMed  Google Scholar 

  26. Kato K, Ishii R, Goto E, Ishitani R, Tokunaga F, Nureki O (2013) Structural and functional analyses of DNA-sensing and immune activation by human cGAS. PLoS ONE 8(10):e76983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol 17(10):1142

    Article  CAS  PubMed  Google Scholar 

  28. Ma Z, Ni G, Damania B (2018) Innate sensing of DNA virus genomes. Annu Rev Virol 5:341–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455(7213):674–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhong B, Yang Y, Li S, Wang Y-Y, Li Y, Diao F, Lei C, He X, Zhang L, Tien P (2008) The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29(4):538–550

    Article  CAS  PubMed  Google Scholar 

  31. Jin L, Waterman PM, Jonscher KR, Short CM, Reisdorph NA, Cambier JC (2008) MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol Cell Biol 28(16):5014–5026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun W, Li Y, Chen L, Chen H, You F, Zhou X, Zhou Y, Zhai Z, Chen D, Jiang Z (2009) ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci 106(21):8653–8658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He L, Xiao X, Yang X, Zhang Z, Wu L, Liu Z (2017) STING signaling in tumorigenesis and cancer therapy: a friend or foe? Cancer Lett 402:203–212

    Article  CAS  PubMed  Google Scholar 

  34. Maelfait J, Rehwinkel J (2017) RECONsidering sensing of cyclic dinucleotides. Immunity 46(3):337–339

    Article  CAS  PubMed  Google Scholar 

  35. Danilchanka O, Mekalanos JJ (2013) Cyclic dinucleotides and the innate immune response. Cell 154(5):962–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abe T, Harashima A, Xia T, Konno H, Konno K, Morales A, Ahn J, Gutman D, Barber GN (2013) STING recognition of cytoplasmic DNA instigates cellular defense. Mol Cell 50(1):5–15

    Article  CAS  PubMed  Google Scholar 

  37. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478(7370):515–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265):788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ablasser A, Chen ZJ (2019) cGAS in action: expanding roles in immunity and inflammation. Science 363(6431):eaat8657

    Article  CAS  PubMed  Google Scholar 

  40. Holm CK, Jensen SB, Jakobsen MR, Cheshenko N, Horan KA, Moeller HB, Gonzalez-Dosal R, Rasmussen SB, Christensen MH, Yarovinsky TO (2012) Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nat Immunol 13(8):737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao P, Ascano M, Zillinger T, Wang W, Dai P, Serganov AA, Gaffney BL, Shuman S, Jones RA, Deng L (2013) Structure-function analysis of STING activation by c [G (2′, 5′) pA (3′, 5′) p] and targeting by antiviral DMXAA. Cell 154(4):748–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang X, Shi H, Wu J, Zhang X, Sun L, Chen C, Chen ZJ (2013) Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 51(2):226–235

    Article  CAS  PubMed  Google Scholar 

  43. Gao D, Li T, Li X-D, Chen X, Li Q-Z, Wight-Carter M, Chen ZJ (2015) Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci 112(42):E5699–E5705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahn J, Ruiz P, Barber GN (2014) Intrinsic self-DNA triggers inflammatory disease dependent on STING. J Immunol 193(9):4634–4642

    Article  CAS  PubMed  Google Scholar 

  45. Gao D, Wu J, Wu Y-T, Du F, Aroh C, Yan N, Sun L, Chen ZJ (2013) Cyclic GMP–AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341(6148):903–906

    Article  CAS  PubMed  Google Scholar 

  46. Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar KB, Richardson RB, Ratushny AV, Litvak V (2014) Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505(7485):691

    Article  CAS  PubMed  Google Scholar 

  47. Lio C-WJ, McDonald B, Takahashi M, Dhanwani R, Sharma N, Huang J, Pham E, Benedict CA, Sharma S (2016) cGAS–STING signaling regulates initial innate control of cytomegalovirus infection. J Virol 90(17):7789–7797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reinert LS, Lopušná K, Winther H, Sun C, Thomsen MK, Nandakumar R, Mogensen TH, Meyer M, Vægter C, Nyengaard JR (2016) Sensing of HSV-1 by the cGAS–STING pathway in microglia orchestrates antiviral defence in the CNS. Nat Commun 7:13348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marriott I, Burmeister AR (2018) The Interleukin-10 family of cytokines and their role in the CNS. Front Cell Neurosci 12:458

    Article  PubMed  PubMed Central  Google Scholar 

  50. Reinert LS, Rashidi AS, Tran DN, Katzilieris-Petras G, Hvidt AK, Gohr M, Fruhwürth S, Bodda C, Thomsen MK, Vendelbo MH (2021) Brain immune cells undergo cGAS/STING-dependent apoptosis during herpes simplex virus type 1 infection to limit type I IFN production. J Clin Investig 131(1):1–17

    Article  Google Scholar 

  51. Hernáez B, Alonso G, Georgana I, El-Jesr M, Martín R, Shair KH, Fischer C, Sauer S, de Motes CM, Alcamí A (2020) Viral cGAMP nuclease reveals the essential role of DNA sensing in protection against acute lethal virus infection. Sci Adv 6(38):eaab4565

    Article  Google Scholar 

  52. García-Belmonte R, Pérez-Núñez D, Pittau M, Richt JA, Revilla Y (2019) African swine fever virus Armenia/07 virulent strain controls interferon beta production through the cGAS–STING pathway. J Virol 93(12):e02298-e12218

    Article  PubMed  PubMed Central  Google Scholar 

  53. He J, Hao R, Liu D, Liu X, Wu S, Guo S, Wang Y, Tien P, Guo D (2016) Inhibition of hepatitis B virus replication by activation of the cGAS–STING pathway. J Gen Virol 97(12):3368–3378

    Article  CAS  PubMed  Google Scholar 

  54. Anghelina D, Lam E, Falck-Pedersen E (2016) Diminished innate antiviral response to adenovirus vectors in cGAS/STING-deficient mice minimally impacts adaptive immunity. J Virol 90(13):5915–5927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Z, Chen J, Hu J, Zhang H, Xu F, He W, Wang X, Li M, Lu W, Zeng G (2019) cGAS/STING axis mediates a topoisomerase II inhibitor-induced tumor immunogenicity. J Clin Investig 129:4850–4862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xiong M, Wang S, Wang Y-Y, Ran Y (2018) The regulation of cGAS. Virologica Sinica 33(2):117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brunette RL, Young JM, Whitley DG, Brodsky IE, Malik HS, Stetson DB (2012) Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J Exp Med 209(11):1969–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Briggs LJ, Johnstone RW, Elliot RM, Xiao C-Y, Dawson M, Trapani JA, Jans DA (2001) Novel properties of the protein kinase CK2-site-regulated nuclear-localization sequence of the interferon-induced nuclear factor IFI 16. Biochem J 353(1):69–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Veeranki S, Choubey D (2012) Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol Immunol 49(4):567–571

    Article  CAS  PubMed  Google Scholar 

  60. Dell’Oste V, Gatti D, Giorgio AG, Gariglio M, Landolfo S, De Andrea M (2015) The interferon-inducible DNA-sensor protein IFI16: a key player in the antiviral response. New Microbiol 38(1):5

    CAS  PubMed  Google Scholar 

  61. Jakobsen MR, Paludan SR (2014) IFI16: at the interphase between innate DNA sensing and genome regulation. Cytokine Growth Factor Rev 25(6):649–655

    Article  CAS  PubMed  Google Scholar 

  62. Jin T, Perry A, Jiang J, Smith P, Curry JA, Unterholzner L, Jiang Z, Horvath G, Rathinam VA, Johnstone RW (2012) Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36(4):561–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu Z, Zheng X, Wang Y, Song H (2014) Bacterial expression of the HINab domain of IFI16: Purification, characterization of DNA binding activity, and co-crystallization with viral dsDNA. Protein Expr Purif 102:13–19

    Article  CAS  PubMed  Google Scholar 

  64. Horan KA, Hansen K, Jakobsen MR, Holm CK, Søby S, Unterholzner L, Thompson M, West JA, Iversen MB, Rasmussen SB (2013) Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors. J Immunol 190(5):2311–2319

    Article  CAS  PubMed  Google Scholar 

  65. Jakobsen MR, Bak RO, Andersen A, Berg RK, Jensen SB, Jin T, Laustsen A, Hansen K, Østergaard L, Fitzgerald KA (2013) IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc Natl Acad Sci 110(48):E4571–E4580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Berg RK, Rahbek SH, Kofod-Olsen E, Holm CK, Melchjorsen J, Jensen DG, Hansen AL, Jørgensen LB, Ostergaard L, Tolstrup M (2014) T cells detect intracellular DNA but fail to induce type I IFN responses: implications for restriction of HIV replication. PLoS ONE 9(1):e84513

    Article  PubMed  PubMed Central  Google Scholar 

  67. Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ, Greene WC (2014) IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343(6169):428–432

    Article  CAS  PubMed  Google Scholar 

  68. Johnson KE, Chikoti L, Chandran B (2013) Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J Virol 87(9):5005–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sohn J, Morrone S, Wang T, Hooy R (2015) The cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy. Biophys J 108(2):40a

    Article  Google Scholar 

  70. Ansari MA, Dutta S, Veettil MV, Dutta D, Iqbal J, Kumar B, Roy A, Chikoti L, Singh VV, Chandran B (2015) Herpesvirus genome recognition induced acetylation of nuclear IFI16 is essential for its cytoplasmic translocation, inflammasome and IFN-β responses. PLoS Pathog 11(7):e1005019

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dutta D, Dutta S, Veettil MV, Roy A, Ansari MA, Iqbal J, Chikoti L, Kumar B, Johnson KE, Chandran B (2015) BRCA1 regulates IFI16 mediated nuclear innate sensing of herpes viral DNA and subsequent induction of the innate inflammasome and interferon-β responses. PLoS Pathog 11(6):e1005030

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kobiyama K, Takeshita F, Jounai N, Sakaue-Sawano A, Miyawaki A, Ishii KJ, Kawai T, Sasaki S, Hirano H, Ishii N (2010) Extrachromosomal histone H2B mediates innate antiviral immune responses induced by intracellular double-stranded DNA. J Virol 84(2):822–832

    Article  CAS  PubMed  Google Scholar 

  73. Iqbal J, Ansari MA, Kumar B, Dutta D, Roy A, Chikoti L, Pisano G, Dutta S, Vahedi S, Veettil MV (2016) Histone H2B-IFI16 recognition of nuclear herpesviral genome induces cytoplasmic interferon-β responses. PLoS Pathog 12(10):e1005967

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li Y-G, Siripanyaphinyo U, Tumkosit U, Noranate N, Atchareeya A, Pan Y, Kameoka M, Kurosu T, Ikuta K, Takeda N (2012) Poly (I: C), an agonist of toll-like receptor-3, inhibits replication of the Chikungunya virus in BEAS-2B cells. Virol J 9(1):114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jensen S, Thomsen AR (2012) Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol 86(6):2900–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zevini A, Olagnier D, Hiscott J (2017) Crosstalk between cytoplasmic RIG-I and STING sensing pathways. Trends Immunol 38(3):194–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Loo Y-M, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34(5):680–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hou F, Sun L, Zheng H, Skaug B, Jiang Q-X, Chen ZJ (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146(3):448–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, e Sousa CR (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314(5801):997–1001

    Article  CAS  PubMed  Google Scholar 

  80. Takahasi K, Kumeta H, Tsuduki N, Narita R, Shigemoto T, Hirai R, Yoneyama M, Horiuchi M, Ogura K, Fujita T (2009) Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains identification of the RNA recognition loop in RIG-I-like receptors. J Biol Chem 284(26):17465–17474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu H, He X, Zheng H, Huang LJ, Hou F, Yu Z, de la Cruz MJ, Borkowski B, Zhang X, Chen ZJ (2015) Correction: structural basis for the prion-like MAVS filaments in antiviral innate immunity. Elife 4:e07546

    Article  PubMed Central  Google Scholar 

  82. Reikine S, Nguyen JB, Modis Y (2014) Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front Immunol 5:342

    Article  PubMed  PubMed Central  Google Scholar 

  83. Choi MK, Wang Z, Ban T, Yanai H, Lu Y, Koshiba R, Nakaima Y, Hangai S, Savitsky D, Nakasato M (2009) A selective contribution of the RIG-I-like receptor pathway to type I interferon responses activated by cytosolic DNA. Proc Natl Acad Sci 106(42):17870–17875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zeng W, Chen ZJ (2008) MITAgating viral infection. Immunity 29(4):513–515

    Article  CAS  PubMed  Google Scholar 

  85. Ding Q, Cao X, Lu J, Huang B, Liu Y-J, Kato N, Shu H-B, Zhong J (2013) Hepatitis C virus NS4B blocks the interaction of STING and TBK1 to evade host innate immunity. J Hepatol 59(1):52–58

    Article  CAS  PubMed  Google Scholar 

  86. Pattabhi S, Wilkins CR, Dong R, Knoll ML, Posakony J, Kaiser S, Mire CE, Wang ML, Ireton RC, Geisbert TW (2016) Targeting innate immunity for antiviral therapy through small molecule agonists of the RLR pathway. J Virol 90(5):2372–2387

    Article  CAS  PubMed Central  Google Scholar 

  87. Sun B, Sundström KB, Chew JJ, Bist P, Gan ES, Tan HC, Goh KC, Chawla T, Tang CK, Ooi EE (2017) Dengue virus activates cGAS through the release of mitochondrial DNA. Sci Rep 7(1):3594

    Article  PubMed  PubMed Central  Google Scholar 

  88. Franz KM, Neidermyer WJ, Tan Y-J, Whelan SP, Kagan JC (2018) STING-dependent translation inhibition restricts RNA virus replication. Proc Natl Acad Sci 115(9):E2058–E2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nitta S, Sakamoto N, Nakagawa M, Kakinuma S, Mishima K, Kusano-Kitazume A, Kiyohashi K, Murakawa M, Nishimura-Sakurai Y, Azuma S (2013) Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity. Hepatology 57(1):46–58

    Article  CAS  PubMed  Google Scholar 

  90. Yu C-Y, Chang T-H, Liang J-J, Chiang R-L, Lee Y-L, Liao C-L, Lin Y-L (2012) Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog 8(6):e1002780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T, Gutman D, Maringer K, Bernal-Rubio D, Shabman RS, Simon V (2012) DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog 8(10):e1002934

    Article  PubMed  PubMed Central  Google Scholar 

  92. Parker MT, Gopinath S, Perez CE, Linehan MM, Crawford J, Iwasaki A, Lindenbach BD (2018) Innate Immune priming by cGAS as a preparatory countermeasure against RNA virus infection. bioRxiv:434027

  93. Su C, Zheng C (2017) Herpes simplex virus 1 abrogates the cGAS/STING-mediated cytosolic DNA-sensingpathway via its virion host shutoff protein, UL41. J Virol 91(6):e02414–02416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Biolatti M, Dell'Oste V, Pautasso S, Gugliesi F, von Einem J, Krapp C, Jakobsen MR, Borgogna C, Gariglio M, De Andrea M (2018) Human cytomegalovirus tegument protein pp65 (pUL83) dampens type I interferon productionby inactivating the DNA sensor cGAS without affecting STING. J Virol 92(6):e01774–01717

    Article  PubMed  PubMed Central  Google Scholar 

  95. Aguirre S, Luthra P, Sanchez-Aparicio MT, Maestre AM, Patel J, Lamothe F, Fredericks AC, Tripathi S, Zhu T, Pintado-Silva J (2017) Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNAsensing during infection. Nature Microbiol 2(5):17037

    Article  CAS  Google Scholar 

  96. Ghosh A, Shao L, Sampath P, Zhao B, Patel NV, Zhu J, Behl B, Parise RA, Beumer JH, O’Sullivan RJ (2019) Oligoadenylate-Synthetase-Family Protein OASL Inhibits Activity of the DNA Sensor cGAS during DNA VirusInfection to Limit Interferon Production. Immunity 50(1):51–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kalamvoki M, Roizman B (2014) HSV-1 degrades, stabilizes, requires, or is stung by STING depending on ICP0, the US3 protein kinase, and cell derivation. In: Proceedings of the National Academy of Sciences 111 (5):E611-E617

  98. Liu Y, Li J, Chen J, Li Y, Wang W, Du X, Song W, Zhang W, Lin L, Yuan Z (2015) Hepatitis B viruspolymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. J Virol 89(4):2287–2300

    Article  PubMed  Google Scholar 

  99. Stack J, Haga IR, Schröder M, Bartlett NW, Maloney G, Reading PC, Fitzgerald KA, Smith GL, Bowie AG (2005) Vaccinia virus protein A46R targets multiple Toll-like–interleukin-1 receptor adaptors and contributes tovirulence. J Experiment Med 201(6):1007–1018

    Article  CAS  Google Scholar 

  100. Zhang G, Chan B, Samarina N, Abere B, Weidner-Glunde M, Buch A, Pich A, Brinkmann MM, Schulz TF (2016) Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. In: Proceedings of the National Academy of Sciences 113 (8):E1034-E1043

  101. Ma Z, Jacobs SR, West JA, Stopford C, Zhang Z, Davis Z, Barber GN, Glaunsinger BA, Dittmer DP, Damania B (2015) Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. In: Proceedings of the National Academy of Sciences 112 (31):E4306-E4315

Download references

Acknowledgements

We acknowledge the support of Ramalingaswami Fellowship Grant (BT/RLF/Re-entry/09/2015), Government of India, Ministry of Science and Technology, Department of Biotechnology (DBT) and Early Career Research Award Grant (File No. ECR/2018/002114) from the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, to author Jawed Iqbal. We also acknowledge the support of a non-NET fellowship from the Union Grant Commission (UGC) to Saleem Anwar and Khursheed Ul Islam, and a Senior Research Fellowship from ICMR, Government of India, to Md Iqbal Azmi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawed Iqbal.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Handling Editor: Carolina Scagnolari.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, S., Ul Islam, K., Azmi, M.I. et al. cGAS–STING-mediated sensing pathways in DNA and RNA virus infections: crosstalk with other sensing pathways. Arch Virol 166, 3255–3268 (2021). https://doi.org/10.1007/s00705-021-05211-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05211-x

Navigation