Skip to main content

Advertisement

Log in

Icariin, Formononetin and Caffeic Acid Phenethyl Ester Inhibit Feline Calicivirus Replication In Vitro

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Cats infected with feline calicivirus (FCV) often display oral ulcers and inflammation of the upper respiratory tract, which can lead to death in severe cases. Antiviral therapy is one of the most effective ways to control FCV infection. Natural compounds in Chinese herbal medicines and medicinal plants provide abundant resources for research on antiviral drugs. In this study, we found that icariin (ICA), formononetin (FMN) and caffeic acid phenethyl ester (CPAE) show low cytotoxicity towards F81 cells, that the three natural compounds have apparent antiviral effects on FCV in vitro, and that they can inhibit different FCV strains. Then, we found that ICA and FMN mainly function in the early stage of FCV infection, while CAPE can function in both the early and late stages of FCV infection. Finally, we found that ICA has an antagonistic effect on FMN and CAPE in FCV infection, and FMN has a synergistic effect with CAPE against FCV infection. Our results showed that ICA, FMN and CAPE may be potential drug candidates for FCV-induced diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Conley MJ, McElwee M, Azmi L et al (2019) Calicivirus VP2 forms a portal-like assembly following receptor engagement. Nature 565:377–381. https://doi.org/10.1038/s41586-018-0852-1

    Article  CAS  PubMed  Google Scholar 

  2. Bergmann M, Ballin A, Schulz B et al (2019) Treatment of acute viral feline upper respiratory tract infections. Tierarztl Prax Ausg K Klientiere Heimtiere 47:98–109. https://doi.org/10.1055/a-0870-0801

    Article  Google Scholar 

  3. Sato H, Sehata G, Okada N et al (2017) Intranasal immunization with inactivated feline calicivirus particles confers robust protection against homologous virus and suppression against heterologous virus in cats. J Gen Virol 98:1730–1738. https://doi.org/10.1099/jgv.0.000827

    Article  CAS  PubMed  Google Scholar 

  4. Bergmann M, Speck S, Rieger A et al (2019) Antibody response to feline calicivirus vaccination in healthy adult cats. Viruses. https://doi.org/10.3390/v11080702

    Article  PubMed  PubMed Central  Google Scholar 

  5. Smith SL, Afonso MM, Pinchbeck GL et al (2020) Temporally separated feline calicivirus isolates do not cluster phylogenetically and are similarly neutralised by high-titre vaccine strain FCV-F9 antisera in vitro. J Feline Med Surg 22:602–607. https://doi.org/10.1177/1098612X19866521

    Article  PubMed  Google Scholar 

  6. Gaskell R, Dawson S, Radford A, Thiry E (2007) Feline herpesvirus. Vet Res 38:337–354. https://doi.org/10.1051/vetres:2006063

    Article  CAS  PubMed  Google Scholar 

  7. Weiss RC, Cox NR, Boudreaux MK (1993) Toxicologic effects of ribavirin in cats. J Vet Pharmacol Ther 16:301–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cui Z, Li D, Yi S et al (2019) Equine immunoglobulin F(ab’)2 fragments protect cats against feline calicivirus infection. Int Immunopharmacol 75:105714. https://doi.org/10.1016/j.intimp.2019.105714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cui Z, Li D, Xie Y et al (2020) Nitazoxanide protects cats from feline calicivirus infection and acts synergistically with mizoribine in vitro. Antivir Res. https://doi.org/10.1016/j.antiviral.2020.104827

    Article  PubMed  Google Scholar 

  10. Synowiec A, Gryniuk I, Pachota M et al (2019) Cat flu: broad spectrum polymeric antivirals. Antivir Res 170:104563. https://doi.org/10.1016/j.antiviral.2019.104563

    Article  CAS  PubMed  Google Scholar 

  11. Ghildiyal R, Prakash V, Chaudhary VK et al (2020) Phytochemicals as antiviral agents: recent updates. Plant-Deriv Bioact. https://doi.org/10.1007/978-981-15-1761-7_12

    Article  Google Scholar 

  12. He C, Wang Z, Shi J (2020) Pharmacological effects of icariin. Adv Pharmacol San Diego Calif 87:179–203. https://doi.org/10.1016/bs.apha.2019.10.004

    Article  CAS  Google Scholar 

  13. Xiong W, Chen Y, Wang Y, Liu J (2014) Roles of the antioxidant properties of icariin and its phosphorylated derivative in the protection against duck virus hepatitis. BMC Vet Res. https://doi.org/10.1186/s12917-014-0226-3

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lai PK-K, Chan JY-W, Cheng L et al (2013) Isolation of anti-inflammatory fractions and compounds from the root of astragalus membranaceus. Phytother Res 27:581–587. https://doi.org/10.1002/ptr.4759

    Article  CAS  PubMed  Google Scholar 

  15. Krenn L, Paper DH (2009) Inhibition of angiogenesis and inflammation by an extract of red clover (Trifolium pratense L.). Phytomedicine 16:1083–1088. https://doi.org/10.1016/j.phymed.2009.05.017

    Article  CAS  PubMed  Google Scholar 

  16. Mu H, Bai Y-H, Wang S-T et al (2009) Research on antioxidant effects and estrogenic effect of formononetin from Trifolium pratense (red clover). Phytomedicine 16:314–319. https://doi.org/10.1016/j.phymed.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  17. Wang H, Zhang D, Ge M et al (2015) Formononetin inhibits enterovirus 71 replication by regulating COX- 2/PGE2 expression. Virol J 12:35. https://doi.org/10.1186/s12985-015-0264-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sud’ina GF, Mirzoeva OK, Pushkareva MA et al (1993) Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett 329:21–24. https://doi.org/10.1016/0014-5793(93)80184-v

    Article  PubMed  Google Scholar 

  19. Grunberger D, Banerjee R, Eisinger K et al (1988) Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia 44:230–232. https://doi.org/10.1007/BF01941717

    Article  CAS  PubMed  Google Scholar 

  20. Natarajan K, Singh S, Burke TR et al (1996) Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci U S A 93:9090–9095. https://doi.org/10.1073/pnas.93.17.9090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park JH, Lee JK, Kim HS et al (2004) Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice. Int Immunopharmacol 4:429–436. https://doi.org/10.1016/j.intimp.2004.01.013

    Article  CAS  PubMed  Google Scholar 

  22. Ho C-C, Lin S-S, Chou M-Y et al (2005) Effects of CAPE-like compounds on HIV replication in vitro and modulation of cytokines in vivo. J Antimicrob Chemother 56:372–379. https://doi.org/10.1093/jac/dki244

    Article  CAS  PubMed  Google Scholar 

  23. Kishimoto N, Kakino Y, Iwai K et al (2005) In vitro antibacterial, antimutagenic and anti-influenza virus activity of caffeic acid phenethyl esters. Biocontrol Sci 10:155–161. https://doi.org/10.4265/bio.10.155

    Article  CAS  Google Scholar 

  24. Wang K, Pei Z, Dong H, et al (2017) Isolation, genomic characterization and pathogenicity of a feline calicivirus strain Ch-Jl4 from Chinese stray cats. Pak Vet J 37(4):431–434.

  25. Zhao Y, Chen X, Ying Y et al (2017) Isolation and phylogenetic analysis of three feline calicivirus strains from domestic cats in Jilin Province, China. Arch Virol 162:2579–2589. https://doi.org/10.1007/s00705-017-3392-3

    Article  CAS  PubMed  Google Scholar 

  26. Li D, Cui Z, Li G et al (2020) Antiviral effect of copper chloride on feline calicivirus and synergy with ribavirin in vitro. BMC Vet Res 16:231. https://doi.org/10.1186/s12917-020-02441-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yadav B, Wennerberg K, Aittokallio T, Tang J (2015) Searching for drug synergy in complex dose-response landscapes using an interaction potency model. Comput Struct Biotechnol J 13:504–513. https://doi.org/10.1016/j.csbj.2015.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ianevski A, He L, Aittokallio T, Tang J (2017) SynergyFinder: a web application for analyzing drug combination dose-response matrix data. Bioinform Oxf Engl 33:2413–2415. https://doi.org/10.1093/bioinformatics/btx162

    Article  CAS  Google Scholar 

  29. Ianevski A, Giri AK, Aittokallio T (2020) SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Nucleic Acids Res 48:W488–W493. https://doi.org/10.1093/nar/gkaa216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caringella F, Elia G, Decaro N et al (2019) Feline calicivirus infection in cats with virulent systemic disease, Italy. Res Vet Sci 124:46–51. https://doi.org/10.1016/j.rvsc.2019.02.008

    Article  PubMed  Google Scholar 

  31. Brunet S, Sigoillot-Claude C, Pialot D, Poulet H (2019) Multiple correspondence analysis on amino acid properties within the variable region of the capsid protein shows differences between classical and virulent systemic feline calicivirus strains. Viruses. https://doi.org/10.3390/v11121090

    Article  PubMed  PubMed Central  Google Scholar 

  32. Di Martino B, Lanave G, Di Profio F et al (2020) Identification of feline calicivirus in cats with enteritis. Transbound Emerg Dis. https://doi.org/10.1111/tbed.13605

    Article  PubMed  Google Scholar 

  33. Tian J, Liu D, Liu Y et al (2016) Molecular characterization of a feline calicivirus isolated from tiger and its pathogenesis in cats. Vet Microbiol 192:110–117. https://doi.org/10.1016/j.vetmic.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  34. Kim Y, Chang K-O (2018) Fexaramine as an entry blocker for feline caliciviruses. Antivir Res 152:76–83. https://doi.org/10.1016/j.antiviral.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  35. Alfajaro MM, Cho E-H, Park J-G et al (2018) Feline calicivirus- and murine norovirus-induced COX-2/PGE2 signaling pathway has proviral effects. PLoS ONE 13:e0200726. https://doi.org/10.1371/journal.pone.0200726

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tolba MF, Azab SS, Khalifa AE et al (2013) Caffeic acid phenethyl ester, a promising component of propolis with a plethora of biological activities: a review on its anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective effects. IUBMB Life 65:699–709. https://doi.org/10.1002/iub.1189

    Article  CAS  PubMed  Google Scholar 

  37. Sosnovtsev SV, Prikhod’koBelliot EAG et al (2003) Feline calicivirus replication induces apoptosis in cultured cells. Virus Res 94:1–10. https://doi.org/10.1016/S0168-1702(03)00115-1

    Article  CAS  PubMed  Google Scholar 

  38. Willcocks MM, Carter MJ, Roberts LO (2004) Cleavage of eukaryotic initiation factor eIF4G and inhibition of host-cell protein synthesis during feline calicivirus infection. J Gen Virol 85:1125–1130. https://doi.org/10.1099/vir.0.19564-0

    Article  CAS  PubMed  Google Scholar 

  39. Ong SKL, Shanmugam MK, Fan L et al (2019) Focus on formononetin: anticancer potential and molecular targets. Cancers. https://doi.org/10.3390/cancers11050611

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The present work was supported by the National Key R&D Program for the 13th Five-Year Plan, the Ministry of Science and Technology of China and the National Key R&D Program (2016YFD0501002).

Author information

Authors and Affiliations

Authors

Contributions

Zhanding Cui, Dengliang Li, Shihui Zhao, and Guixue Hu conceived and designed the experiments. Zhanding Cui, Dengliang Li and Shihui Zhao performed the experiments. Zhanding Cui, Dengliang Li and Shihui Zhao analyzed the data. Qian Zhang, Yuxin Tan, Qianwen Gong, Ting Liu, Jiang Shao, Shuang Zhang, Hailong Huang, Junzheng Wang, Zhihua Pei, Hao Dong and Kai Wang contributed reagents/materials/analysis tools. Zhanding Cui, Dengliang Li and Shihui Zhao wrote the paper. Guixue Hu and Zhiyong Li requested financial support. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Guixue Hu or Zhiyong Li.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Reimar Johne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

705_2021_5107_MOESM1_ESM.tif

S1. ICA, FMN and CAPE IFA results. A solution of ICA, FMN and CAPE in DMSO was diluted to different concentrations (60 μM, 20 μM, 0 μM) with MEM. Solutions with different concentrations were then added to cells together with 100 TCID50 FCV. The mock group was treated with the same volume of MEM containing 0.4% DMSO.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Wang, ., Li, . et al. Icariin, Formononetin and Caffeic Acid Phenethyl Ester Inhibit Feline Calicivirus Replication In Vitro. Arch Virol 166, 2443–2450 (2021). https://doi.org/10.1007/s00705-021-05107-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05107-w

Navigation