Skip to main content

Advertisement

Log in

Low virus diversity and spread in wild Capsicum spp. accessions from Ecuador under natural inoculum pressure

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Challenging wild plant accessions with pathogens is an initial approach for finding resistance genes for breeding programs. Viruses can be transmitted artificially by mechanical or arthropod-borne inoculation, but these experimental assays do not always reproduce natural conditions in the field. In this study, 56 wild Capsicum spp. accessions from Ecuador that were under natural inoculum pressure for six months were screened for virus infections by RNA sequencing. These plants exhibited low virus diversity in comparison to a commercial pepper cultivar that was used as a susceptible host. Subjecting numerous plants to natural infection prior to artificial assays may indicate promising accessions to track within virus/vector resistance breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Availability of data and material

The datasets generated during and/or analysed during the current study are available in the NCBI repository, https://www.ncbi.nlm.nih.gov/nucleotide

References

  1. Akinyemi IA, Wang F, Zhou B, Qi S, Wu Q (2016) Ecogenomic survey of plant viruses infecting tobacco by next generation sequencing. Virol J. https://doi.org/10.1186/s12985-016-0639-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barba M, Czosnek H, Hadidi A (2014) Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 6(1):106–136. https://doi.org/10.3390/v6010106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barboza G, Carrizo García C, Leiva Gonzalez S, Scaldaferro M, Reyes X (2019) Four new species of Capsicum (Solanaceae) from the tropical Andes and an update on the phylogeny of the genus. PLoS ONE 14(1):1–26

    Article  Google Scholar 

  4. Bosland PW, Votava EJ (2012) Peppers vegetable and spice capsicums. CABI, Wallingford

    Book  Google Scholar 

  5. Carrizo-García C, Barfuss MHJ, Sehr EM, Barboza GE, Samuel R, Moscone EA, Ehrendorfer F (2016) Phylogenetic relationships, diversification and expansion of chili peppers. Ann Botany 2016:35–51. https://doi.org/10.1093/aob/mcw079

    Article  Google Scholar 

  6. Carvajal-Yepes M, Olaya C, Lozano I, Cuervo M, Castaño M, Cuellar WJ (2014) Unraveling complex viral infections in cassava (Manihot esculenta Crantz) from colombia. Virus Res 186:76–86. https://doi.org/10.1016/j.virusres.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  7. Choi S, Lee JH, Kang WH, Kim J, Huy HN, Park SW, Son EH, Kwon JK, Kang BC (2018) Identification of cucumber mosaic resistance 2 (cmr2) that confers resistance to a new cucumber mosaic virus isolate p1 (cmv-p1) in pepper (capsicum spp.). Front Plant Sci 9:1–11. https://doi.org/10.3389/fpls.2018.01106

    Article  Google Scholar 

  8. de Medeiros RB, Resende RO, Carvalho RCP, Dianese EC, Costa CL, Sgro J-Y (2015) Virologia Vegetal. Edu-UnB, Brasilia

    Google Scholar 

  9. de Oliveira AS, Boiteux LS, Kormelink R, Resende RO (2018) The Sw-5 gene cluster: tomato breeding and research toward orthotospovirus disease control. Front Plant Sci 9:1–7. https://doi.org/10.3389/fpls.2018.01055

    Article  Google Scholar 

  10. Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57(3):1070–1082. https://doi.org/10.2135/cropsci2016.10.0885

    Article  Google Scholar 

  11. Fajardo TVM, Silva FN, Eiras M, Nickel O (2017) High-throughput sequencing applied for the identification of viruses infecting grapevines in Brazil and genetic variability analysis. Trop Plant Pathol 42(4):250–260. https://doi.org/10.1007/s40858-017-0142-8

    Article  Google Scholar 

  12. Fraile A, García-Arenal F (2010) The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res 76(10):1–32. https://doi.org/10.1016/s0065-3527(10)76001-2

    Article  CAS  PubMed  Google Scholar 

  13. Fribourg C (2007) Virus, viroides y mullicutes de las plantas cultivadas en el Perú. Biblioteca Nacional del Perú, Lima

    Google Scholar 

  14. García-González C, Silvar C (2020) Phytochemical assessment of Native Ecuadorian peppers (Capsicum spp.) and correlation analysis to. Plants 9:986

    Article  Google Scholar 

  15. García-Neria MA, Rivera-Bustamante RF (2011) Characterization of geminivirus resistance in an accession of capsicum chinense Jacq. Mol Plant Microbe Interact 24(2):172–182. https://doi.org/10.1094/MPMI-06-10-0126

    Article  CAS  PubMed  Google Scholar 

  16. Jayasinghe U, Salazar LF (1993) Manual de técnicas de virología de plantas. Centro Internacional de la Papa, Lima

    Google Scholar 

  17. Jo Y, Choi H, Kim SM, Kim SL, Lee BC, Cho WK (2017) The pepper virome: natural co-infection of diverse viruses and their quasispecies. BMC Genomics 18(1):1–12. https://doi.org/10.1186/s12864-017-3838-8

    Article  CAS  Google Scholar 

  18. Jo Y, Lian S, Chu H, Cho JK, Yoo S, Choi H, Yoon J, Choi S, Lee BC, Cho WK (2018) Peach RNA viromes in six different peach cultivars. Sci Rep 2017:1–14. https://doi.org/10.1038/s41598-018-20256-w

    Article  CAS  Google Scholar 

  19. Jones S, Baizan-Edge A, MacFarlane S, Torrance L (2017) Viral diagnostics in plants using next generation sequencing: computational analysis in practice. Front Plant Sci 8:22. https://doi.org/10.3389/fpls.2017.01770

    Article  Google Scholar 

  20. Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, Simon R (2009) Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388(1):1–7. https://doi.org/10.1016/j.virol.2009.03.024

    Article  CAS  PubMed  Google Scholar 

  21. Ma Y, Marais A, Lefebvre M, Theil S, Svanella-Dumas L, Faure C, Candresse T (2020) Phytovirome analysis of wild plant populations: comparison of double-stranded RNA and virion-associated nucleic acid metagenomic approaches. J Virol 94(1):1–14. https://doi.org/10.1128/jvi.01462-19

    Article  CAS  Google Scholar 

  22. Malmstrom CM, Melcher U, Bosque-Pérez NA (2011) The expanding field of plant virus ecology: historical foundations, knowledge gaps, and research directions. Virus Res 159(2):84–94. https://doi.org/10.1016/j.virusres.2011.05.010

    Article  CAS  PubMed  Google Scholar 

  23. Murphy J, Blauth J, Livingstone K, Lackney V, Jahn M (1998) Genetic mapping of the pvr1 locus in Capsicum spp. and evidence that distinct potyvirus resistance loci control responses that differ at the Whole plant and cellular levels.pdf. Mol Plant Microbe Interact 9:943–951

    Article  Google Scholar 

  24. Nuez F, Gil R, Costa J (1996) El cultivo de pimientos, chiles y ajíes. Mundi-Prensa, Madrid

    Google Scholar 

  25. Okada R, Kiyota E, Sabanadzovic S, Moriyama H, Fukuhara T, Saha P, Roossinck MJ, Severin A, Valverde RA (2011) Bell pepper endornavirus: molecular and biological properties, and occurrence in the genus Capsicum. J Gen Virol 92(11):2664–2673. https://doi.org/10.1099/vir.0.034686-0

    Article  CAS  PubMed  Google Scholar 

  26. Paredes-Montero JR, Ibarra MA, Arias-Zambrano M, Peralta EL, Brown JK (2020) Phylo-biogeographical distribution of whitefly Bemisia tabaci (Insecta: Aleyrodidae) mitotypes in Ecuador. Ecosphere 11:6. https://doi.org/10.1002/ecs2.3154

    Article  Google Scholar 

  27. Pickersgill B (1997) Genetic resources and breeding of Capsicum spp. Euphytica 1997:129–133

    Article  Google Scholar 

  28. Quito-Avila DF, Alvarez RA, Mendoza AA (2016) Occurrence of maize lethal necrosis in Ecuador: a disease without boundaries? Eur J Plant Pathol 146(3):705–710. https://doi.org/10.1007/s10658-016-0943-5

    Article  CAS  Google Scholar 

  29. Quito-Avila DF, Peralta EL, Martin RR, Ibarra MA, Alvarez RA, Mendoza A, Insuasti M, Ochoa J (2014) Detection and occurrence of melon yellow spot virus in Ecuador: an emerging threat to cucurbit production in the region. Eur J Plant Pathol 140:193–197. https://doi.org/10.1007/s10658-014-0454-1

    Article  CAS  Google Scholar 

  30. Roossinck MJ (2012) Plant virus metagenomics: biodiversity and ecology. Annu Rev Genet 46:359–369. https://doi.org/10.1146/annurev-genet-110711-155600

    Article  CAS  PubMed  Google Scholar 

  31. Roossinck MJ (2013) Plant virus ecology. PLoS Pathog 9(5):9–11. https://doi.org/10.1371/journal.ppat.1003304

    Article  CAS  Google Scholar 

  32. Roossinck MJ, Martin DP, Roumagnac P (2015) Plant virus metagenomics: advances in virus discovery. Phytopathology 105(6):716–727. https://doi.org/10.1094/PHYTO-12-14-0356-RVW

    Article  CAS  Google Scholar 

  33. Rumbou A, Candresse T, Marais A, Svanella-Dumas L, Landgraf M, von Bargen S, Büttner C (2020) Unravelling the virome in birch: RNA-Seq reveals a complex of known and novel viruses. PLoS ONE 15:1–16. https://doi.org/10.1371/journal.pone.0221834

    Article  CAS  Google Scholar 

  34. Sawada H, Takeuchi S, Matsumoto K, Hamada H, Kiba A, Matsumoto M, Watanabe Y, Suzuki K, Hikichi Y (2005) A new tobamovirus-resistance gene Hk in Capsucm annuum. Japanese Soc Horticult Sci 74:289–294

    Article  CAS  Google Scholar 

  35. Schoen DJ, Brown AH (2001) The conservation of wild plant species in seed banks. Bioscience 51:11

    Article  Google Scholar 

  36. Stevens MR, Scott SJ, Gergerich RC (1994) Evaluation of seven Lycopersicon species for resistance to tomato spotted wilt virus (TSWV). Euphytica 80(1–2):79–84. https://doi.org/10.1007/BF00039301

    Article  Google Scholar 

  37. Tedersoo L, Drenkhan R, Anslan S, Morales-Rodriguez C, Cleary M (2019) High-throughput identification and diagnostics of pathogens and pests: overview and practical recommendations. Mol Ecol Resourc 19(1):47–76. https://doi.org/10.1111/1755-0998.12959

    Article  Google Scholar 

Download references

Acknowledgements

We thank the “Acuerdo de transferencia de material para el uso de semillas de Capsicum spp. del banco de germoplasma para fines de investigación entre el Instituto Nacional de Investigaciones (INIAP) y la Universidad Técnica de Manabí (UTM) de fecha septiembre 16 de 2016”.

Funding

This work was supported by Secretaría de Educación Superior, Ciencia, Tecnología e Innovación del Ecuador (SENESCYT), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Apoio à Pesquisa do Distrito Federal (FAP-DF).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by JBV-O, LC, SMV-Z, ÁM-A, and ASO. The first draft of the manuscript was written by JBV-O, ASO, and ROR, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Athos S. De Oliveira.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Handling Editor: Stephen John Wylie.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vélez-Olmedo, J.B., Quiñonez, L.C., Vélez-Zambrano, S.M. et al. Low virus diversity and spread in wild Capsicum spp. accessions from Ecuador under natural inoculum pressure. Arch Virol 166, 1447–1453 (2021). https://doi.org/10.1007/s00705-021-05027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05027-9

Navigation