Skip to main content

Advertisement

Log in

Nuclear localization of non-structural protein 3 (NS3) during dengue virus infection

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Although dengue virus (DENV) replication occurs in the cytoplasm, the nucleus plays an essential role during infection. Both the capsid protein (C) and non-structural protein 5 (NS5) are translocated into the infected cell nucleus to favor viral replication. Previously, our group reported the nuclear localization of the NS3 protein during DENV infection of mosquito cells; however, the nuclear localization of the DENV NS3 protein in human host cells has not been described. Here, we demonstrated that NS3 is present in the nucleus of Huh7 cells at early infection times, and later, it is mainly located in the cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Guzman MG, Harris E (2015) Dengue. Lancet 385:453–465. https://doi.org/10.1016/S0140-6736(14)60572-9

    Article  PubMed  Google Scholar 

  2. Hasan S, Jamdar SF, Alalowi M, Al Beaiji SM (2016) Dengue virus: a global human threat: review of literature. J Int Soc Prev Community Dent 6:1–6. https://doi.org/10.4103/2231-0762.175416

    Article  PubMed  PubMed Central  Google Scholar 

  3. Velandia ML, Castellanos JE (2011) Virus del dengue: estructura y ciclo viral. Infectio 15:33–43. https://doi.org/10.1016/S0123-9392(11)70074-1

    Article  Google Scholar 

  4. Mackenzie J (2005) Wrapping things up about virus RNA replication. Traffic Cph Den 6:967–977. https://doi.org/10.1111/j.1600-0854.2005.00339.x

    Article  CAS  Google Scholar 

  5. Lopez-Denman AJ, Mackenzie JM (2017) The IMPORTance of the nucleus during flavivirus replication. Viruses. https://doi.org/10.3390/v9010014

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chumakov SP, Prassolov VS (2010) Organization and regulation of nucleocytoplasmic transport. Mol Biol 44:186–201. https://doi.org/10.1134/S0026893310020020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660. https://doi.org/10.1146/annurev.cellbio.15.1.607

    Article  PubMed  Google Scholar 

  8. Fontoura BM, Faria PA, Nussenzveig DR (2005) Viral interactions with the nuclear transport machinery: discovering and disrupting pathways. IUBMB Life 57:65–72. https://doi.org/10.1080/15216540500078608

    Article  CAS  PubMed  Google Scholar 

  9. Cautain B, Hill R, de Pedro N, Link W (2015) Components and regulation of nuclear transport processes. FEBS J 282:445–462. https://doi.org/10.1111/febs.13163

    Article  CAS  PubMed  Google Scholar 

  10. Dingwall C, Laskey RA (1991) Nuclear targeting sequences–a consensus? Trends Biochem Sci 16:478–481. https://doi.org/10.1016/0968-0004(91)90184-w

    Article  CAS  PubMed  Google Scholar 

  11. Goldfarb DS, Corbett AH, Mason DA et al (2004) Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol 14:505–514. https://doi.org/10.1016/j.tcb.2004.07.016

    Article  CAS  PubMed  Google Scholar 

  12. Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623. https://doi.org/10.1016/0092-8674(91)90245-t

    Article  CAS  PubMed  Google Scholar 

  13. Harel A, Forbes DJ (2004) Importin Beta: conducting a much larger cellular symphony. Mol Cell 16:319–330. https://doi.org/10.1016/j.molcel.2004.10.026

    Article  CAS  PubMed  Google Scholar 

  14. Hutten S, Kehlenbach RH (2007) CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 17:193–201. https://doi.org/10.1016/j.tcb.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  15. Xu D, Farmer A, Chook YM (2010) Recognition of nuclear targeting signals by Karyopherin-β proteins. Curr Opin Struct Biol 20:782–790. https://doi.org/10.1016/j.sbi.2010.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yarbrough ML, Mata MA, Sakthivel R, Fontoura BMA (2014) Viral subversion of nucleocytoplasmic trafficking. Traffic Cph Den 15:127–140. https://doi.org/10.1111/tra.12137

    Article  CAS  Google Scholar 

  17. Amineva SP, Aminev AG, Palmenberg AC, Gern JE (2004) Rhinovirus 3C protease precursors 3CD and 3CD′ localize to the nuclei of infected cells. J Gen Virol 85:2969–2979. https://doi.org/10.1099/vir.0.80164-0

    Article  CAS  PubMed  Google Scholar 

  18. R S, S R, A D, (2004) Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off. Virology 320:195–205. https://doi.org/10.1016/j.virol.2003.10.020

    Article  CAS  Google Scholar 

  19. Tian W, Cui Z, Zhang Z et al (2011) Poliovirus 2Apro induces the nucleic translocation of poliovirus 3CD and 3C′ proteins. Acta Biochim Biophys Sin 43:38–44. https://doi.org/10.1093/abbs/gmq112

    Article  CAS  PubMed  Google Scholar 

  20. Walker E, Jensen L, Croft S et al (2016) Rhinovirus 16 2A protease affects nuclear localization of 3CD during infection. J Virol 90:11032–11042. https://doi.org/10.1128/JVI.00974-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De Jesús-González LA, Cervantes-Salazar M, Reyes-Ruiz JM et al (2020) The nuclear pore complex: a target for ns3 protease of dengue and zika viruses. Viruses 12:583. https://doi.org/10.3390/v12060583

    Article  CAS  PubMed Central  Google Scholar 

  22. Bulich R, Aaskov JG (1992) Nuclear localization of dengue 2 virus core protein detected with monoclonal antibodies. J Gen Virol 73(Pt 11):2999–3003. https://doi.org/10.1099/0022-1317-73-11-2999

    Article  CAS  PubMed  Google Scholar 

  23. Fraser JE, Rawlinson SM, Wang C et al (2014) Investigating Dengue Virus Nonstructural Protein 5 (NS5) Nuclear Import. In: Padmanabhan R, Vasudevan SG (eds) Dengue. Springer, New York, pp 301–328

    Chapter  Google Scholar 

  24. Lopez-Denman AJ, Russo A, Wagstaff KM et al (2018) Nucleocytoplasmic shuttling of the West Nile virus RNA-dependent RNA polymerase NS5 is critical to infection. Cell Microbiol 20:e12848. https://doi.org/10.1111/cmi.12848

    Article  CAS  PubMed  Google Scholar 

  25. Ng IHW, Chan KW-K, Tan MJA et al (2019) Zika virus NS5 forms supramolecular nuclear bodies that sequester importin-α and modulate the host immune and pro-inflammatory response in neuronal cells. ACS Infect Dis 5:932–948. https://doi.org/10.1021/acsinfecdis.8b00373

    Article  CAS  PubMed  Google Scholar 

  26. Pryor MJ, Rawlinson SM, Butcher RE et al (2007) Nuclear localization of dengue virus nonstructural protein 5 through its importin alpha/beta-recognized nuclear localization sequences is integral to viral infection. Traffic Cph Den 8:795–807. https://doi.org/10.1111/j.1600-0854.2007.00579.x

    Article  CAS  Google Scholar 

  27. Tay MYF, Fraser JE, Chan WKK et al (2013) Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Res 99:301–306. https://doi.org/10.1016/j.antiviral.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  28. Tay MYF, Smith K, Ng IHW et al (2016) The C-terminal 18 amino acid region of dengue virus NS5 regulates its subcellular localization and contains a conserved arginine residue essential for infectious virus production. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1005886

    Article  PubMed  PubMed Central  Google Scholar 

  29. Uchil PD, Kumar AVA, Satchidanandam V (2006) Nuclear localization of flavivirus RNA synthesis in infected cells. J Virol 80:5451–5464. https://doi.org/10.1128/JVI.01982-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uchil PD, Satchidanandam V (2003) Characterization of RNA synthesis, replication mechanism, and in vitro RNA-dependent RNA polymerase activity of Japanese encephalitis virus. Virology 307:358–371. https://doi.org/10.1016/S0042-6822(02)00130-7

    Article  CAS  PubMed  Google Scholar 

  31. Ye J, Chen Z, Li Y et al (2017) Japanese encephalitis virus NS5 inhibits Type I Interferon (IFN) production by blocking the nuclear translocation of IFN regulatory Factor 3 and NF-κB. J Virol. https://doi.org/10.1128/JVI.00039-17

    Article  PubMed  PubMed Central  Google Scholar 

  32. Prikhod’ko GG, Prikhod’ko EA, Pletnev AG, Cohen JI (2002) Langat flavivirus protease NS3 binds Caspase-8 and induces apoptosis. J Virol 76:5701–5710. https://doi.org/10.1128/JVI.76.11.5701-5710.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wölk B, Sansonno D, Kräusslich H-G et al (2000) Subcellular localization, stability, and trans-cleavage competence of the hepatitis c virus NS3-NS4A complex expressed in tetracycline-regulated cell lines. J Virol 74:2293–2304

    Article  Google Scholar 

  34. Kosugi S, Hasebe M, Tomita M, Yanagawa H (2009) Systematic identification of yeast cell cycle-dependent nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci USA 106:10171–10176

    Article  CAS  Google Scholar 

  35. Xu D, Marquis K, Pei J et al (2015) LocNES: a computational tool for locating classical NESs in CRM1 cargo proteins. Bioinform Oxf Engl 31:1357–1365. https://doi.org/10.1093/bioinformatics/btu826

    Article  CAS  Google Scholar 

  36. Prieto G, Fullaondo A, Rodriguez JA (2014) Prediction of nuclear export signals using weighted regular expressions (Wregex). Bioinformatics 30:1220–1227. https://doi.org/10.1093/bioinformatics/btu016

    Article  CAS  PubMed  Google Scholar 

  37. Muramatsu S, Ishido S, Fujita T et al (1997) Nuclear localization of the NS3 protein of hepatitis C virus and factors affecting the localization. J Virol 71:4954–4961

    Article  CAS  Google Scholar 

  38. Reyes-Ruiz JM, Osuna-Ramos JF, Cervantes-Salazar M et al (2018) Strand-like structures and the nonstructural proteins 5, 3 and 1 are present in the nucleus of mosquito cells infected with dengue virus. Virology 515:74–80. https://doi.org/10.1016/j.virol.2017.12.014

    Article  CAS  PubMed  Google Scholar 

  39. Frankl A, Mari M, Reggiori F (2015) Electron microscopy for ultrastructural analysis and protein localization in Saccharomyces cerevisiae. Microb Cell 2:412–428. https://doi.org/10.15698/mic2015.11.237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Byk LA, Gamarnik AV (2016) Properties and functions of the dengue virus capsid protein. Annu Rev Virol 3:263–281. https://doi.org/10.1146/annurev-virology-110615-042334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Junjhon J, Pennington JG, Edwards TJ et al (2014) Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. J Virol 88:4687–4697. https://doi.org/10.1128/JVI.00118-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hsieh S-C, Tsai W-Y, Wang W-K (2010) The length of and nonhydrophobic residues in the transmembrane domain of dengue virus envelope protein are critical for its retention and assembly in the endoplasmic reticulum. J Virol 84:4782–4797. https://doi.org/10.1128/JVI.01963-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chiu H-C, Hannemann H, Heesom KJ et al (2014) High-throughput quantitative proteomic analysis of dengue virus Type 2 infected A549 cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0093305

    Article  PubMed  PubMed Central  Google Scholar 

  44. Atasheva S, Fish A, Fornerod M, Frolova EI (2010) Venezuelan equine encephalitis virus capsid protein forms a tetrameric complex with crm1 and importin α/β that obstructs nuclear pore complex function. J Virol 84:4158. https://doi.org/10.1128/JVI.02554-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghildyal R, Ho A, Dias M et al (2009) The respiratory syncytial virus matrix protein possesses a Crm1-mediated nuclear export mechanism. J Virol 83:5353–5362. https://doi.org/10.1128/JVI.02374-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pryor MJ, Rawlinson SM, Wright PJ, Jans DA (2006) CRM1-dependent nuclear export of dengue virus type 2 NS5. Novartis Found Symp 277:149–161 ((discussion 161-163, 251–253))

    CAS  PubMed  Google Scholar 

  47. Segura-Cabrera A, García-Pérez CA, Guo X, Rodríguez-Pérez MA (2013) A viral-human interactome based on structural motif-domain interactions captures the human infectome. PLoS ONE 8:e71526. https://doi.org/10.1371/journal.pone.0071526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brooks AJ, Johansson M, John AV et al (2002) The Interdomain region of dengue NS5 protein that binds to the viral helicase NS3 contains independently functional importin β1 and importin α/β-recognized nuclear localization signals. J Biol Chem 277:36399–36407. https://doi.org/10.1074/jbc.M204977200

    Article  PubMed  Google Scholar 

  49. Peränen J, Rikkonen M, Liljeström P, Kääriäinen L (1990) Nuclear localization of Semliki Forest virus-specific nonstructural protein nsP2. J Virol 64:1888–1896

    Article  Google Scholar 

  50. Rawlinson SM, Pryor MJ, Wright PJ, Jans DA (2009) CRM1-mediated nuclear export of dengue virus RNA polymerase NS5 modulates interleukin-8 induction and virus production. J Biol Chem 284:15589–15597. https://doi.org/10.1074/jbc.M808271200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heaton NS, Perera R, Berger KL et al (2010) Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci U S A 107:17345–17350. https://doi.org/10.1073/pnas.1010811107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Angleró-Rodríguez YI, Pantoja P, Sariol CA (2014) Dengue Virus Subverts the Interferon Induction Pathway via NS2B/3 Protease-IκB Kinase ε Interaction. Clin Vaccine Immunol CVI 21:29–38. https://doi.org/10.1128/CVI.00500-13

    Article  CAS  PubMed  Google Scholar 

  53. Lescar J, Luo D, Xu T et al (2008) Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from Dengue virus as a target. Antiviral Res 80:94–101. https://doi.org/10.1016/j.antiviral.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  54. Mastrangelo E, Pezzullo M, De Burghgraeve T et al (2012) Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemother 67:1884–1894. https://doi.org/10.1093/jac/dks147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wagstaff KM, Sivakumaran H, Heaton SM et al (2012) Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J 443:851–856. https://doi.org/10.1042/BJ20120150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Bibiana Chávez-Munguía and Anel E. Lagunes Guillen for their assistance in preparation of the electron microscopy image samples, Fernando Medina and Cleotilde Cancio Lonches for their assistance in cell culture, and Jaime Zarco for technical assistance. This research was supported by CONACYT (Mexico) grants CB-220824 and A1-S-9005 from RMDA and CB-250696 from ALGE, and Fundación Miguel Alemán. The funders had no role in study design, data collection, analysis, decision to publish, or manuscript preparation. Palacios-Rápalo SN, De Jesús-González LA, Reyes-Ruiz JM, Farfan-Morales CN, and Osuna-Ramos JF received scholarships from CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana Lorena Gutiérrez-Escolano or Rosa María del Ángel.

Additional information

Handling Editor: Zhenhai Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 1260 KB)

Supplementary file2 (PPTX 894 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios-Rápalo, S.N., De Jesús-González, L.A., Reyes-Ruiz, J.M. et al. Nuclear localization of non-structural protein 3 (NS3) during dengue virus infection. Arch Virol 166, 1439–1446 (2021). https://doi.org/10.1007/s00705-021-05026-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05026-w

Navigation