Skip to main content

Advertisement

Log in

Alpha-mangostin inhibits dengue virus production and pro-inflammatory cytokine/chemokine expression in dendritic cells

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Dengue virus (DENV) is transmitted to humans via the bite of an Aedes mosquito, causing dengue fever, dengue hemorrhagic fever, or dengue shock syndrome. In the human skin, DENV first infects keratinocytes, dendritic cells, and macrophages. Monocytes that are recruited to the site of infection and differentiate into monocyte-derived dendritic cells (moDCs) are also infected by DENV. DENV-infected DCs secrete pro-inflammatory cytokines and chemokines to modulate the immune response. The viral load and massive pro-inflammatory cytokine/chemokine production, referred to as a ‘cytokine storm’, are associated with disease severity. We propose that an ideal drug for treatment of DENV infection should inhibit both virus production and the cytokine storm, and previously, we reported that alpha-mangostin (α-MG) inhibits both DENV replication and cytokine production in hepatocytes. However, the effect of α-MG on DENV-infected moDCs remains unknown. In this study, we investigated the effects of α-MG on DENV infection and pro-inflammatory cytokine/chemokine production in primary moDCs generated ex vivo from monocytes of healthy individuals. α-MG at the non-toxic concentrations of 20 and 25 μM reduced DENV production by more than 10-fold and 1,000-fold, respectively. Treatment with α-MG efficiently inhibited the infection of immature moDCs by all four serotypes of DENV. Time-of-addition studies suggested that α-MG (25 μM) inhibits DENV at the early stage of replication. In addition, α-MG markedly reduced cytokine/chemokine (TNF-α, CCL4, CCL5, CXCL10, IL6, IL1β, IL10, and IFN-α) transcription in DENV-infected immature moDCs. These findings suggest the potential of α-MG to be developed as a novel anti-DENV drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. WHO report (2012) Global strategy for dengue prevention and control. 2012–2020. http://www.who.int/denguecontrol/9789241504034/en/

  2. Halstead S (1988) Pathogenesis of dengue: challenges to molecular biology. Science 239(4839):476–481

    Article  CAS  Google Scholar 

  3. Khetarpal N, Khanna I (2016) Dengue fever: causes, complications, and vaccine strategies. J Immunol Res 2016:14

    Article  Google Scholar 

  4. Castillo JA, Naranjo JS, Rojas M, Castaño D, Velilla PA (2019) Role of monocytes in the pathogenesis of dengue. Archivum Immunologiae et Therapiae Experimentalis 67(1):27–40

    Article  CAS  Google Scholar 

  5. Schmid MA, Harris E (2014) Monocyte recruitment to the dermis and differentiation to dendritic cells increases the targets for dengue virus replication. PLoS Pathog 10(12):e1004541

    Article  Google Scholar 

  6. Sun P, Kochel TJ (2013) The battle between infection and host immune responses of dengue virus and its implication in dengue disease pathogenesis. Sci World J 2013:843469

    Google Scholar 

  7. Libraty DH, Pichyangkul S, Ajariyakhajorn C, Endy TP, Ennis FA (2001) Human dendritic cells are activated by dengue virus infection: enhancement by gamma interferon and implications for disease pathogenesis. J Virol 75(8):3501–3508

    Article  CAS  Google Scholar 

  8. Silveira GF, Meyer F, Delfraro A, Mosimann AL, Coluchi N, Vasquez C et al (2011) Dengue virus type 3 isolated from a fatal case with visceral complications induces enhanced proinflammatory responses and apoptosis of human dendritic cells. J Virol 85(11):5374–5383

    Article  CAS  Google Scholar 

  9. Dejnirattisai W, Duangchinda T, Lin CL, Vasanawathana S, Jones M, Jacobs M et al (2008) A complex interplay among virus, dendritic cells, T cells, and cytokines in dengue virus infections. J Immunol (Baltimore, Md: 1950) 181(9):5865–74.

  10. Pang T, Cardosa MJ, Guzman MG (2007) Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol Cell Biol 85(1):43–45

    Article  CAS  Google Scholar 

  11. Mahabusarakam W, Wiriyachitra P, Taylor WC (1987) Chemical constituents of Garcinia mangostana. J Nat Prod 50(3):474–478

    Article  CAS  Google Scholar 

  12. Ibrahim MY, Hashim NM, Mariod AA, Mohan S, Abdulla MA, Abdelwahab SI et al (2016) α-Mangostin from Garcinia mangostana Linn: an updated review of its pharmacological properties. Arab J Chem 9(3):317–329

    Article  CAS  Google Scholar 

  13. Chen S-X, Wan M, Loh B-N (1996) Active constituents against HIV-1 protease from Garcinia mangostana. Planta Med 62(04):381–382

    Article  CAS  Google Scholar 

  14. Shaneyfelt ME, Burke AD, Graff JW, Jutila MA, Hardy ME (2006) Natural products that reduce rotavirus infectivity identified by a cell-based moderate-throughput screening assay. Virol J 3:68

    Article  Google Scholar 

  15. Choi M, Kim YM, Lee S, Chin YW, Lee C (2014) Mangosteen xanthones suppress hepatitis C virus genome replication. Virus Genes 49(2):208–222

    Article  CAS  Google Scholar 

  16. Tarasuk M, Songprakhon P, Chimma P, Sratongno P, Na-Bangchang K, Yenchitsomanus PT (2017) Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression. Virus Res 240:180–189

    Article  CAS  Google Scholar 

  17. Sanofi updates information on dengue vaccine (2017)

  18. Durbin AP (2016) A dengue vaccine. Cell 166(1):1

    Article  CAS  Google Scholar 

  19. Ghosh A, Dar L (2015) Dengue vaccines: challenges, development, current status and prospects. Indian J Med Microbiol 33(1):3–15

    Article  CAS  Google Scholar 

  20. Priyadarshini D, Gadia RR, Tripathy A, Gurukumar KR, Bhagat A, Patwardhan S et al (2010) Clinical findings and pro-inflammatory cytokines in dengue patients in Western India: a facility-based study. PloS One 5(1):e8709-e

  21. Green S, Vaughn DW, Kalayanarooj S, Nimmannitya S, Suntayakorn S, Nisalak A et al (1999) Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity. J Infect Dis 179(4):755–762

    Article  CAS  Google Scholar 

  22. Hober D, Poli L, Roblin B, Gestas P, Chungue E, Granic G et al (1993) Serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta) in dengue-infected patients. Am J Trop Med Hyg 48(3):324–331

    Article  CAS  Google Scholar 

  23. Martins SdT, Silveira GF, Alves LR, dos Santos CND, Bordignon J (2012) Dendritic cell apoptosis and the pathogenesis of dengue. Viruses 4(11):2736–2753

  24. Sun P, Fernandez S, Marovich MA, Palmer DR, Celluzzi CM, Boonnak K et al (2009) Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic cells after infection with dengue virus. Virology 383(2):207–215

    Article  CAS  Google Scholar 

  25. Narasimhan S, Maheshwaran S, Abu-Yousef IA, Majdalawieh AF, Rethavathi J, Das PE et al (2017) Anti-bacterial and anti-fungal activity of xanthones obtained via semi-synthetic modification of alpha-mangostin from Garcinia mangostana. Molecules 22(2)

  26. Chen LG, Yang LL, Wang CC (2008) Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem Toxicol 46(2):688–693

    Article  CAS  Google Scholar 

  27. Karunakaran T, Ee GCL, Ismail IS, Mohd Nor SM, Zamakshshari NH (2018) Acetyl- and O-alkyl- derivatives of beta-mangostin from Garcinia mangostana and their anti-inflammatory activities. Nat Prod Res 32(12):1390–1394

    Article  CAS  Google Scholar 

  28. Sugiyanto Z, Yohan B, Hadisaputro S, Dharmana E, Suharti C, Winarto et al (2019) Inhibitory effect of alpha-mangostin to dengue virus replication and cytokines expression in human peripheral blood mononuclear cells. Nat Prod Bioprospect 9(5):345–349

    Article  CAS  Google Scholar 

  29. Gil L, Martinez G, Tapanes R, Castro O, Gonzalez D, Bernardo L et al (2004) Oxidative stress in adult dengue patients. Am J Trop Med Hyg 71(5):652–657

    Article  CAS  Google Scholar 

  30. Lin YL, Liu CC, Chuang JI, Lei HY, Yeh TM, Lin YS et al (2000) Involvement of oxidative stress, NF-IL-6, and RANTES expression in dengue-2-virus-infected human liver cells. Virology 276(1):114–126

    Article  CAS  Google Scholar 

  31. Soundravally R, Hoti SL, Patil SA, Cleetus CC, Zachariah B, Kadhiravan T et al (2014) Association between proinflammatory cytokines and lipid peroxidation in patients with severe dengue disease around defervescence. IJID 18:68–72

    CAS  PubMed  Google Scholar 

  32. Soundravally R, Sankar P, Hoti SL, Selvaraj N, Bobby Z, Sridhar MG (2008) Oxidative stress induced changes in plasma protein can be a predictor of imminent severe dengue infection. Acta Trop 106(3):156–161

    Article  CAS  Google Scholar 

  33. Wang J, Chen Y, Gao N, Wang Y, Tian Y, Wu J et al (2013) Inhibitory effect of glutathione on oxidative liver injury induced by dengue virus serotype 2 infections in mice. PLOS One 8(1):e55407

    Article  CAS  Google Scholar 

  34. Pérez-Rojas JM, Cruz C, García-López P, Sánchez-González DJ, Martínez-Martínez CM, Ceballos G et al (2009) Renoprotection by α-mangostin is related to the attenuation in renal oxidative/nitrosative stress induced by cisplatin nephrotoxicity. Free Radic Res 43(11):1122–1132

    Article  Google Scholar 

  35. Herrera-Aco DR, Medina-Campos ON, Pedraza-Chaverri J, Sciutto-Conde E, Rosas-Salgado G, Fragoso-González G (2019) Alpha-mangostin: Anti-inflammatory and antioxidant effects on established collagen-induced arthritis in DBA/1J mice. Food Chem Toxicol 124:300–315

    Article  CAS  Google Scholar 

  36. Khunchai S, Junking M, Suttitheptumrong A, Kooptiwut S, Haegeman G, Limjindaporn T et al (2015) NF-κB is required for dengue virus NS5-induced RANTES expression. Virus Res 197:92–100

  37. Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB (1998) Phylogeny of the genus Flavivirus. J Virol 72(1):73–83

    Article  CAS  Google Scholar 

  38. Ben-Shachar R, Schmidler S, Koelle K (2016) Drivers of inter-individual variation in dengue viral load dynamics. PLoS Comput Biol 12(11):e1005194

    Article  Google Scholar 

  39. Vicente CR, Herbinger KH, Froschl G, Malta Romano C, de Souza Areias Cabidelle A, Cerutti Junior C (2016) Serotype influences on dengue severity: a cross-sectional study on 485 confirmed dengue cases in Vitoria, Brazil. BMC Infect Dis 16:320

Download references

Acknowledgements

This work was supported by grants from Mahidol University (R15610004) and the Thailand Research Fund (TRF IRG 5980006). MJ and PY were both supported by Chalermprakiat Grants from the Faculty of Medicine Siriraj Hospital, Mahidol University. AP was supported by the Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Kevin Jones for critical reading and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Petlada Yongpitakwattana, Atthapan Morchang, and Nunghathai Sawasdee: methodology, investigation, data curation, writing – original draft preparation. Aussara Panya: methodology, visualization, supervision, writing – reviewing and editing. Pa-thai Yenchitsomanus: conceptualization, project administration, funding acquisition, methodology, visualization, supervision, writing – reviewing and editing.

Corresponding author

Correspondence to Pa-thai Yenchitsomanus.

Ethics declarations

Conflict of interest

All authors declare no personal or professional conflicts of interest, and no financial support from the companies that produce and/or distribute the drugs, devices, or materials described in this report.

Additional information

Handling Editor: Zhongjie Shi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 859 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yongpitakwattana, P., Morchang, A., Panya, A. et al. Alpha-mangostin inhibits dengue virus production and pro-inflammatory cytokine/chemokine expression in dendritic cells. Arch Virol 166, 1623–1632 (2021). https://doi.org/10.1007/s00705-021-05017-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05017-x

Navigation