Skip to main content
Log in

Complete nucleotide sequence of chrysanthemum mosaic-associated virus, a novel emaravirus infecting chrysanthemum

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Here, we report the complete genome sequence of chrysanthemum mosaic-associated virus (ChMaV), a putative new member of the genus Emaravirus. The ChMaV genome comprises seven negative-sense RNA segments (RNAs 1, 2, 3a, 3b, 4, 5, and 6), and the amino acid sequences of its RNA-dependent RNA polymerase (RNA1), glycoprotein precursor (RNA2), nucleocapsid protein (RNA3), and movement protein (RNA4) showed the closest relationship to pear chlorotic leaf spot-associated virus. Phylogenetic analysis showed that it clusters with emaraviruses whose host plants originate from East Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Elbeaino T, Digiaro M, Mielke-Ehret N, Muehlbach HP, Martelli GP (2018) ICTV virus taxonomy profile: Fimoviridae. J Gen Virol 99:1478–1479. https://doi.org/10.1099/jgv.0.001143

    Article  CAS  PubMed  Google Scholar 

  2. Mielke N, Muehlbach HP (2007) A novel, multipartite, negative-strand RNA virus is associated with the ringspot disease of European mountain ash (Sorbus aucuparia L.). J Gen Virol 88:1337–1346. https://doi.org/10.1099/vir.0.82715-0

    Article  CAS  PubMed  Google Scholar 

  3. Elbeaino T, Digiaro M, Martelli GP (2009) Complete nucleotide sequence of four RNA segments of fig mosaic virus. Arch Virol 154:1719–1727. https://doi.org/10.1007/s00705-009-0509-3

    Article  CAS  PubMed  Google Scholar 

  4. Mielke-Ehret N, Mühlbach HP (2012) Emaravirus: a novel genus of multipartite, negative strand RNA plant viruses. Viruses 4:1515–1536. https://doi.org/10.3390/v4091515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kulkarni NK, Kumar PL, Muniyappa V, Jones AT, Reddy DVR (2002) Transmission of Pigeon pea sterility mosaic virus by the eriophyid mite, Aceria cajani (Acari: Arthropoda). Plant Dis. 86:1297–1302. https://doi.org/10.1094/PDIS.2002.86.12.1297

    Article  CAS  PubMed  Google Scholar 

  6. Skare JM, Wijkamp I, Rezende J, Michels G, Rush C, Scholthof KB, Scholthof HB (2003) Colony establishment and maintenance of the eriophyid wheat curl mite Aceria tosichella for controlled transmission studies on a new virus-like pathogen. J Virol Methods 108:133–137. https://doi.org/10.1016/s0166-0934(02)00257-4

    Article  CAS  PubMed  Google Scholar 

  7. Kubota K, Usugi T, Tomitaka Y, Shimomoto Y, Takeuchi S, Kadono F, Yanagisawa H, Chiaki Y, Tsuda S (2020) Perilla mosaic virus is a highly divergent emaravirus transmitted by Shevtchenkella sp. (Acari: Eriophyidae). Phytopathology 110:1352–1361. https://doi.org/10.1094/PHYTO-01-20-0013-R

    Article  CAS  PubMed  Google Scholar 

  8. Nemoto H, Kobayashi M, Osawa T, Yamashita S, Doi Y (1980) Studies on Eriophyoid mites I. Two eriophyid mites injurious to fig and chrysanthemum in Japan. Jpn J Appl Entomol Z 24:49-53

  9. Chinose S (1981) A new species of the genus Paraphytoptus (Acari, Eriophydae) on chrysanthemum in Japan. Proc Jpn Soc Syst Zool 21:23–26

    Google Scholar 

  10. Yamashita S (1997) Current problems on eriophyid mites in Japan: their injurious diseases and transmitted viruses. Plant Prot 51:471–476 ((in Japanese))

    Google Scholar 

  11. Kubota K, Chiaki Y, Yanagisawa H, Yamasaki J, Horikawa H, Tsunekawa K, Morita Y (2021) Novel degenerate primer sets for the detection and identification of emaraviruses reveal new chrysanthemum species. J Virol Methods 288:113992. https://doi.org/10.1016/j.jviromet.2020.113992

    Article  CAS  PubMed  Google Scholar 

  12. Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19:520–525. https://doi.org/10.1002/pca.1078

    Article  CAS  PubMed  Google Scholar 

  13. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boratyn GM, Schäffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL (2012) Domain enhanced lookup time accelerated BLAST. Biol Direct 7:12. https://doi.org/10.1186/1745-6150-7-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu H, Wang G, Yag Z, Wang Y, Zhang Z, Li L, Waqas M, Hong N (2020) Identification and characterization of a pear chlorotic leaf spot-associated virus, a novel emaravirus associated with a severe disease of pear trees in China. Plant Dis 104:2786–2798. https://doi.org/10.1094/PDIS-01-20-0040-RE

    Article  CAS  PubMed  Google Scholar 

  16. Di Bello PL, Ho T, Tzanetakis IE (2015) The evolution of emaraviruses is becoming more complex: seven segments identified in the causal agent of rose rosette disease. Virus Res 210:241–244. https://doi.org/10.1016/j.virusres.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  17. Tatineni S, McMechan AJ, Wosula EN, Wegulo SN, Graybosch RA, French R, Hein GL (2014) An eriophyid mite-transmitted plant virus contains eight genomic RNA segments with unusual heterogeneity in the nucleocapsid protein. J Virol 88:11834–11845. https://doi.org/10.1128/JVI.01901-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Elbeaino T, Digiaro M, Uppala M, Sudini H (2015) Deep sequencing of dsRNAs recovered from mosaic-diseased pigeonpea reveals the presence of a novel emaravirus: pigeonpea sterility mosaic virus 2. Arch Virol 160:2019–2029. https://doi.org/10.1007/s00705-015-2479-y

    Article  CAS  PubMed  Google Scholar 

  19. Peracchio C, Forgia M, Chiapello M, Vallino M, Turina M, Ciuffo M (2020) A complex virome including two distinct emaraviruses associated with virus-like symptoms in Camellia japonica. Virus Res 286:197964. https://doi.org/10.1016/j.virusres.2020.197964

    Article  CAS  PubMed  Google Scholar 

  20. Yu C, Karlin DG, Lu Y, Wright K, Chen J, MacFarlane S (2013) Experimental and bioinformatic evidence that raspberry leaf blotch emaravirus P4 is a movement protein of the 30K superfamily. J Gen Virol 94:2117–2128. https://doi.org/10.1099/vir.0.053256-0

    Article  CAS  PubMed  Google Scholar 

  21. Gupta AK, Hein GL, Graybosch RA, Tatineni S (2018) Octapartite negative-sense RNA genome of High Plains wheat mosaic virus encodes two suppressors of RNA silencing. Virology 518:152–162. https://doi.org/10.1016/j.virol.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  22. Gupta AK, Hein GL, Tatineni S (2019) P7 and P8 proteins of High Plains wheat mosaic virus, a negative-strand RNA virus, employ distinct mechanisms of RNA silencing suppression. Virology 535:20–31. https://doi.org/10.1016/j.virol.2019.06.011

    Article  CAS  PubMed  Google Scholar 

  23. Lu Y, McGavin W, Cock PJA, Schnettler E, Yan F, Chen J, MacFarlane S (2015) Newly identified RNAs of raspberry leaf blotch virus encoding a related group of proteins. J Gen Virol 96:3432–3439. https://doi.org/10.1099/jgv.0.000277

    Article  CAS  PubMed  Google Scholar 

  24. Muhire BM, Varsani A, Martin DP (2014) SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 9:e108277. https://doi.org/10.1371/journal.pone.0108277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Katoh K, Standley DM (2013) MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 1:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  Google Scholar 

  27. Zhang S, Yang L, Ma L, Tian X, Li R, Zhou C, Cao M (2020) Virome of Camellia japonica: discovery of and molecular characterization of new viruses of different taxa in camellias. Front Microbiol 11:945. https://doi.org/10.3389/fmicb.2020.00945

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu X, Liu J, Cheng X (2020) First report of Camellia japonica associated emaravirus 1 associated with camellia leaf ringspot and flower color-breaking disease in China. Plant Dis. https://doi.org/10.1094/PDIS-03-20-0657-PDN

    Article  PubMed  Google Scholar 

  29. Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, Chen F (2019) Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Hort Res 6:109

    Article  Google Scholar 

  30. Xue L, Liu Q, Hu H, Song Y, Fan J, Bai B, Zhang M, Wang R, Qin M, Li X, Wu J (2018) The southwestern origin and eastward dispersal of pear (Pyrus pyrifolia) in East Asia revealed by comprehensive genetic structure analysis with SSR markers. Tree Genet Genomes 14:48

    Article  Google Scholar 

  31. Ahmed HM (2019) Ethnomedicinal, phytochemical and pharmacological investigations of Perilla frutescens (L.) Britt. Molecules 24:102

    Article  Google Scholar 

  32. Chung MY, Epperson BK, Gi Chung M (2003) Genetic structure of age classes in Camellia japonica (Theaceae). Evolution 57:62

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Suzuki for sampling, and Y. Matsumura, Y. Narita, J. Sato, and M. Tawa for their assistance in preparing the biological samples and laboratory work. This study was supported by the Fund for Objective Basic Research provided by CARC/NARO.

Funding

This study was supported by a Grant-in-Aid for Development of Practical Technologies to Implement New Agricultural, Forestry, and Fishery Policies administered by the Ministry of Agriculture, Forestry, and Fisheries of Japan (27001C) and the Fund for Objective Basic Research provided by CARC/NARO.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, KK; methodology, KK; formal analysis and investigation, YC, JY, KK, HY, and FK; writing—original draft preparation, KK; writing—review and editing, KK; funding acquisition, KK, HY, and YM; resources, HH and KT.

Corresponding author

Correspondence to Kenji Kubota.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Availability of data and material

The nucleotide sequence reported here is available in the DDBJ/ENA/GenBank database under accession numbers LC576445–LC576451.

Additional information

Handling Editor: Massimo Turina.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubota, K., Yanagisawa, H., Chiaki, Y. et al. Complete nucleotide sequence of chrysanthemum mosaic-associated virus, a novel emaravirus infecting chrysanthemum. Arch Virol 166, 1241–1245 (2021). https://doi.org/10.1007/s00705-021-04979-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-04979-2

Navigation