Molecular characterization of a novel partitivirus hosted by the false morel mushroom Gyromitra esculenta

Abstract

Virus populations of uncultivated fungi remain scarcely studied. In the present study, we characterized a new partitivirus isolated from the false morel mushroom Gyromitra esculenta, named “Gyromitra esculenta partitivirus 1” (GePV1). The complete genome of GePV1, whose sequence was determined by combining high-throughput sequencing and RLM-RACE approaches, comprises two dsRNA segments of 1971 bp and 1799 bp, respectively. Each dsRNA genome segment contains a single open reading frame (ORF), encoding a putative RNA-dependent RNA polymerase (RdRp) and a capsid protein (CP), respectively. The sequences of the RdRp and CP exhibited the highest similarity (69.77% and 47.00% identity, respectively) to those of Rosellinia necatrix partitivirus 2 (RnPV2). Phylogenetic analysis based on the CP and RdRp sequences demonstrated that GePV1 clusters within a clade that includes members of the genus Alphapartitivirus, family Partitiviridae. We propose that GePV1 is a new member of the genus Alphapartitivirus. This is the first study reporting on a new partitivirus identified in the false morel mushroom Gyromitra esculenta.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Ghabrial SA, Caston JR, Jiang D, Nibert ML, Suzuki N (2015) 50-plus years of fungal viruses. Virology 479–480:356–368. https://doi.org/10.1016/j.virol.2015.02.034

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Hillman BI, Annisa A, Suzuki N (2018) Viruses of Plant-Interacting Fungi. Adv Virus Res 100:99–116. https://doi.org/10.1016/bs.aivir.2017.10.003

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Sahin E, Akata I (2018) Viruses infecting macrofungi. Virusdisease 29(1):1–18. https://doi.org/10.1007/s13337-018-0434-8

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Sutela S, Poimala A, Vainio EJ (2019) Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiz119

    Article  PubMed  Google Scholar 

  5. 5.

    Egger KN, Paden JW (1986) Biotrophic associations between lodgepole pine seedlings and postfire ascomycetes (Pezizales) in monoxenic culture. Can J Bot 64(11):2719–2725. https://doi.org/10.1139/b86-359

    Article  Google Scholar 

  6. 6.

    Hansen K, Pfister DH (2006) Systematics of the Pezizomycetes–the operculate discomycetes. Mycologia 98(6):1029–1040. https://doi.org/10.3852/mycologia.98.6.1029

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Hansen L, Knudsen H (2000) Nordic Macromycetes. In: Ascomycetes, vol 1. Nordsvamp, Copenhagen

  8. 8.

    Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI, Wallingford

    Google Scholar 

  9. 9.

    Vainio EJ, Chiba S, Ghabrial SA, Maiss E, Roossinck M, Sabanadzovic S, Suzuki N, Xie J, Nibert M, Ictv Report C (2018) ICTV virus taxonomy profile: partitiviridae. J Gen Virol 99(1):17–18. https://doi.org/10.1099/jgv.0.000985

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Gilbert KB, Holcomb EE, Allscheid RL, Carrington JC (2019) Hiding in plain sight: new virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS ONE 14(7):e0219207. https://doi.org/10.1371/journal.pone.0219207

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Nerva L, Silvestri A, Ciuffo M, Palmano S, Varese GC, Turina M (2017) Transmission of Penicillium aurantiogriseum partiti-like virus 1 to a new fungal host (Cryphonectria parasitica) confers higher resistance to salinity and reveals adaptive genomic changes. Environ Microbiol 19(11):4480–4492. https://doi.org/10.1111/1462-2920.13894

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47(W1):W636–W641. https://doi.org/10.1093/nar/gkz268

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Nibert ML, Ghabrial SA, Maiss E, Lesker T, Vainio EJ, Jiang D, Suzuki N (2014) Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res 188:128–141. https://doi.org/10.1016/j.virusres.2014.04.007

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Ong JWL, Li H, Sivasithamparam K, Dixon KW, Jones MGK, Wylie SJ (2018) Novel and divergent viruses associated with Australian orchid-fungus symbioses. Virus Res 244:276–283. https://doi.org/10.1016/j.virusres.2017.11.026

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Sahin E, Akata I, Keskin E (2020) Novel and divergent bipartite mycoviruses associated with the ectomycorrhizal fungus Sarcosphaera coronaria. Virus Res 286:198071. https://doi.org/10.1016/j.virusres.2020.198071

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Ganeshpurkar A, Gutti G, Singh SK (2019) RNA-dependent RNA polymerases and their emerging roles in antiviral therapy. In: Viral Polymerases. Academic Press, pp 1-42. https://doi.org/10.1016/B978-0-12-815422-9.00001-2

  18. 18.

    te Velthuis AJW (2014) Common and unique features of viral RNA-dependent polymerases. Cell Mol Life Sci 71(22):4403–4420. https://doi.org/10.1007/s00018-014-1695-z

    CAS  Article  Google Scholar 

  19. 19.

    Wang P, Yang G, Shi N, Huang B (2020) Molecular characterization of a new partitivirus, MbPV1, isolated from the entomopathogenic fungus Metarhizium brunneum in China. Arch Virol 165(3):765–769. https://doi.org/10.1007/s00705-019-04517-1

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Chiba S, Lin YH, Kondo H, Kanematsu S, Suzuki N (2013) Effects of defective interfering RNA on symptom induction by, and replication of, a novel partitivirus from a phytopathogenic fungus Rosellinia necatrix. J Virol 87(4):2330–2341. https://doi.org/10.1128/JVI.02835-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Jilber Barutciyan for his assistance in field studies.

Funding

This study was supported by the Ankara University Coordinatorship of Scientific Research Projects with the project number 19H0430004.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ergin Sahin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest for this study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Ioly Kotta-Loizou.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahin, E., Keskin, E. & Akata, I. Molecular characterization of a novel partitivirus hosted by the false morel mushroom Gyromitra esculenta. Arch Virol 166, 1247–1251 (2021). https://doi.org/10.1007/s00705-021-04978-3

Download citation