Combined use of lactic-acid-producing bacteria as probiotics and rotavirus vaccine candidates expressing virus-specific proteins

Abstract

Due to the lower efficacy of currently approved live attenuated rotavirus (RV) vaccines in developing countries, a new approach to the development of safe mucosally administered live bacterial vectors is being considered, using probiotic bacteria as an efficient delivery platform for heterologous RV antigens. Lactic acid bacteria (LAB), which are considered food-grade bacteria and normal microbiota, have been utilized throughout history as probiotics and developed since the 1990s as a delivery system for recombinant heterologous proteins. Over the last decade, LAB have frequently been used as a platform for the delivery of various RV antigens to the mucosa. Given the appropriate safety profile for neonates and providing the benefits of probiotics, recombinant LAB-based vaccines could potentially address the need for a subunit RV vaccine. The present review focuses mainly on different recombinant LAB vaccine constructs for RV and their potential as an alternative recombinant vaccine against RV disease.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Afchangi A, Arashkia A, Shahosseini Z, Jalilvand S, Marashi SM, Roohvand F, Mohajel N, Shoja Z (2018) Immunization of mice by rotavirus NSP4-VP6 fusion protein elicited stronger responses compared to VP6 alone. Viral Immunol 31:233–241

    CAS  PubMed  Google Scholar 

  2. 2.

    Afchangi A, Jalilvand S, Mohajel N, Marashi SM, Shoja Z (2019) Rotavirus VP6 as a potential vaccine candidate. Rev Med Virol 29:e2027

    PubMed  Google Scholar 

  3. 3.

    Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, Koopmans M, Lopman BA (2014) Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect Dis 14:725–730

    PubMed  Google Scholar 

  4. 4.

    Al Kassaa I (2016) New insights on antiviral probiotics: from research to applications. Springer

  5. 5.

    Al Kassaa I (2017) Antiviral Probiotics: A New Concept in Medical Sciences. New Insights on Antiviral Probiotics. Springer, pp 1-46

  6. 6.

    Álvarez B, Krogh-Andersen K, Tellgren-Roth C, Martínez N, Günaydın G, Lin Y, Martín MC, Álvarez MA, Hammarström L, Marcotte H (2015) An exopolysaccharide-deficient mutant of Lactobacillus rhamnosus GG efficiently displays a protective llama antibody fragment against rotavirus on its surface. Appl Environ Microbiol 81:5784–5793

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Aoki-Yoshida A, Saito S, Fukiya S, Aoki R, Takayama Y, Suzuki C, Sonoyama K (2016) Lactobacillus rhamnosus GG increases Toll-like receptor 3 gene expression in murine small intestine ex vivo and in vivo. Benef Microbes 7:421–429

    CAS  PubMed  Google Scholar 

  8. 8.

    Armah GE, Sow SO, Breiman RF, Dallas MJ, Tapia MD, Feikin DR, Binka FN, Steele AD, Laserson KF, Ansah NA, Levine MM, Lewis K, Coia ML, Attah-Poku M, Ojwando J, Rivers SB, Victor JC, Nyambane G, Hodgson A, Schodel F, Ciarlet M, Neuzil KM (2010) Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial. Lancet 376:606–614

    CAS  PubMed  Google Scholar 

  9. 9.

    Azagra-Boronat I, Massot-Cladera M, Knipping K, Garssen J, Ben Amor K, Knol J, Franch À, Castell M, Rodríguez-Lagunas MJ, Pérez-Cano FJ (2020) Strain-Specific probiotic properties of bifidobacteria and lactobacilli for the prevention of diarrhea caused by rotavirus in a preclinical model. Nutrients 12:498

    CAS  PubMed Central  Google Scholar 

  10. 10.

    Banyai K, Estes MK, Martella V, Parashar UD (2018) Viral gastroenteritis. Lancet 392:175–186

    PubMed  Google Scholar 

  11. 11.

    Baral TN, MacKenzie R, Arbabi Ghahroudi M (2013) Single‐domain antibodies and their utility. Curr Protocols Immunol 103:2.17. 11-12.17. 57

  12. 12.

    Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A (2012) Probiotic mechanisms of action. Ann Nutr Metab 61:160–174

    CAS  PubMed  Google Scholar 

  13. 13.

    Bernet M-F, Brassart D, Neeser J-R, Servin A (1994) Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35:483–489

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Besselink MG, van Santvoort HC, Buskens E, Boermeester MA, van Goor H, Timmerman HM, Nieuwenhuijs VB, Bollen TL, van Ramshorst B, Witteman BJ (2008) Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. The Lancet 371:651–659

    Google Scholar 

  15. 15.

    Bhandari N, Rongsen-Chandola T, Bavdekar A, John J, Antony K, Taneja S, Goyal N, Kawade A, Kang G, Rathore SS, Juvekar S, Muliyil J, Arya A, Shaikh H, Abraham V, Vrati S, Proschan M, Kohberger R, Thiry G, Glass R, Greenberg HB, Curlin G, Mohan K, Harshavardhan GV, Prasad S, Rao TS, Boslego J, Bhan MK, India Rotavirus Vaccine G (2014) Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian children in the second year of life. Vaccine 32(Suppl 1):A110-116

    CAS  PubMed  Google Scholar 

  16. 16.

    Bhandari N, Rongsen-Chandola T, Bavdekar A, John J, Antony K, Taneja S, Goyal N, Kawade A, Kang G, Rathore SS, Juvekar S, Muliyil J, Arya A, Shaikh H, Abraham V, Vrati S, Proschan M, Kohberger R, Thiry G, Glass R, Greenberg HB, Curlin G, Mohan K, Harshavardhan GV, Prasad S, Rao TS, Boslego J, Bhan MK, India Rotavirus Vaccine G (2014) Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian infants: a randomised, double-blind, placebo-controlled trial. Lancet 383:2136–2143

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Bishop RF, Davidson GP, Holmes IH, Ruck BJ (1973) Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet 2:1281–1283

    CAS  PubMed  Google Scholar 

  18. 18.

    Bishop RF, Davidson GP, Holmes IH, Ruck BJ (1974) Detection of a new virus by electron microscopy of faecal extracts from children with acute gastroenteritis. Lancet 1:149–151

    CAS  PubMed  Google Scholar 

  19. 19.

    Britton RA, Versalovic J (2008) Probiotics and gastrointestinal infections. Interdiscip Perspect Infect Dis 2008

  20. 20.

    Brown EM, Ke X, Hitchcock D, Jeanfavre S, Avila-Pacheco J, Nakata T, Arthur TD, Fornelos N, Heim C, Franzosa EA (2019) Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host Microbe 25(668–680):e667

    Google Scholar 

  21. 21.

    Burke RM, Tate JE, Kirkwood CD, Steele AD, Parashar UD (2019) Current and new rotavirus vaccines. Curr Opin Infect Dis 32:435–444

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Burnett E, Parashar UD, Tate JE (2020) Real-world effectiveness of rotavirus vaccines, 2006–19: a literature review and meta-analysis. Lancet Global Health 8:e1195–e1202

    PubMed  Google Scholar 

  23. 23.

    Caddy SL, Vaysburd M, Wing M, Foss S, Andersen JT, O ‘Connell K, Mayes K, Higginson K, Iturriza-Gómara M, Desselberger U, James LC (2020) Intracellular neutralisation of rotavirus by VP6-specific IgG. PLoS pathogens 16:e1008732

  24. 24.

    Cano-Garrido O, Seras-Franzoso J, Garcia-Fruitós E (2015) Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microbial Cell Factor 14:1–12

    Google Scholar 

  25. 25.

    Castiglione F, Lazzarini A, Carrano L, Corti E, Ciciliato I, Gastaldo L, Candiani P, Losi D, Marinelli F, Selva E (2008) Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem Biol 15:22–31

    CAS  PubMed  Google Scholar 

  26. 26.

    Choi AH, McNeal MM, Basu M, Flint JA, Stone SC, Clements JD, Bean JA, Poe SA, VanCott JL, Ward RL (2002) Intranasal or oral immunization of inbred and outbred mice with murine or human rotavirus VP6 proteins protects against viral shedding after challenge with murine rotaviruses. Vaccine 20:3310–3321

    CAS  PubMed  Google Scholar 

  27. 27.

    Conner M, Zarley C, Hu B, Parsons S, Drabinski D, Greiner S, Smith R, Jiang B, Corsaro B, Madore H (1996) Virus-like particles as a rotavirus subunit vaccine. J Infect Dis 174:S88–S92

    CAS  PubMed  Google Scholar 

  28. 28.

    De Vrese M, Offick B (2010) Probiotics and prebiotics: effects on diarrhea. Bioactive foods in promoting health. Elsevier, pp 205–227

  29. 29.

    Desselberger U (2017) Differences of rotavirus vaccine effectiveness by country: likely causes and contributing factors. Pathogens 6:65

    PubMed Central  Google Scholar 

  30. 30.

    Didari T, Solki S, Mozaffari S, Nikfar S, Abdollahi M (2014) A systematic review of the safety of probiotics. Expert Opinion Drug Safety 13:227–239

    Google Scholar 

  31. 31.

    Dieye Y, Usai S, Clier F, Gruss A, Piard J-C (2001) Design of a protein-targeting system for lactic acid bacteria. J Bacteriol 183:4157–4166

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ding C, Ma J, Dong Q, Liu Q (2018) Live bacterial vaccine vector and delivery strategies of heterologous antigen: a review. Immunol Lett 197:70–77

    CAS  PubMed  Google Scholar 

  33. 33.

    do Carmo MS, itapary dos Santos C, Araújo MC, Girón JA, Fernandes ES, Monteiro-Neto V (2018) Probiotics, mechanisms of action, and clinical perspectives for diarrhea management in children. Food Funct 9:5074–5095

  34. 34.

    Enouf V, Langella P, Commissaire J, Cohen J, Corthier G (2001) Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl Environm Microbiol 67:1423–1428

    CAS  Google Scholar 

  35. 35.

    Esteban LE, Temprana CF, Argüelles M, Glikmann G, Castello AA (2013) Antigenicity and immunogenicity of rotavirus VP6 protein expressed on the surface of Lactococcus lactis. BioMed Res Int 2013:298598

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Esteban LE, Temprana CF, Argüelles M, Glikmann G, Castello AA (2013) Antigenicity and immunogenicity of rotavirus VP6 protein expressed on the surface of Lactococcus lactis. BioMed Res Int

  37. 37.

    Feng N, Lawton JA, Gilbert J, Kuklin N, Vo P, Prasad BV, Greenberg HB (2002) Inhibition of rotavirus replication by a non-neutralizing, rotavirus VP6-specific IgA mAb. J Clin Investig 109:1203–1213

    CAS  PubMed  Google Scholar 

  38. 38.

    Fernandez-Duarte KP, Olaya-Galán NN, Salas-Cárdenas SP, Lopez-Rozo J, Gutierrez-Fernandez MF (2018) Bifidobacterium adolescentis (DSM 20083) and lactobacillus casei (Lafti L26-DSL): probiotics able to block the in vitro adherence of rotavirus in MA104 cells. Probiot Antimicrob Prot 10:56–63

    CAS  Google Scholar 

  39. 39.

    Figueroa-González I, Cruz-Guerrero A, Quijano G (2011) The benefits of probiotics on human health. J Microbial Biochem Technol S 1:1948–5948

    Google Scholar 

  40. 40.

    Flewett TH, Bryden AS, Davies H (1973) Letter: Virus particles in gastroenteritis. Lancet 2:1497

    CAS  PubMed  Google Scholar 

  41. 41.

    Gampa A, Engen PA, Shobar R, Mutlu EA (2017) Relationships between gastrointestinal microbiota and blood group antigens. Physiolog Genom 49:473–483

    CAS  Google Scholar 

  42. 42.

    Garaicoechea L, Aguilar A, Parra GI, Bok M, Sosnovtsev SV, Canziani G, Green KY, Bok K, Parreño V (2015) Llama nanoantibodies with therapeutic potential against human norovirus diarrhea. PloS one 10:e0133665

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Glass RI, Parashar UD, Bresee JS, Turcios R, Fischer TK, Widdowson MA, Jiang B, Gentsch JR (2006) Rotavirus vaccines: current prospects and future challenges. Lancet 368:323–332

    CAS  PubMed  Google Scholar 

  44. 44.

    Gonzalez-Ochoa G, Flores-Mendoza LK, Icedo-Garcia R, Gomez-Flores R, Tamez-Guerra P (2017) Modulation of rotavirus severe gastroenteritis by the combination of probiotics and prebiotics. Arch Microbiol 199:953–961

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Grandy G, Medina M, Soria R, Terán CG, Araya M (2010) Probiotics in the treatment of acute rotavirus diarrhoea. A randomized, double-blind, controlled trial using two different probiotic preparations in Bolivian children. BMC Infect Diseases 10:253

  46. 46.

    Grangette C, Müller-Alouf H, Hols P, Goudercourt D, Delcour J, Turneer M, Mercenier A (2004) Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria. Infect Immun 72:2731–2737

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Guandalini S, Pensabene L, Zikri MA, Dias JA, Casali LG, Hoekstra H, Kolacek S, Massar K, Micetic-Turk D, Papadopoulou A (2000) Lactobacillus GG administered in oral rehydration solution to children with acute diarrhea: a multicenter European trial. J Pediat Gastroenterol Nutr 30:54–60

    CAS  Google Scholar 

  48. 48.

    Guerin-Danan C, Meslin J-C, Chambard A, Charpilienne A, Relano P, Bouley C, Cohen J, Andrieux C (2001) Food supplementation with milk fermented by Lactobacillus casei DN-114 001 protects suckling rats from rotavirus-associated diarrhea. J Nutr 131:111–117

    CAS  PubMed  Google Scholar 

  49. 49.

    Günaydın G, Zhang R, Hammarström L, Marcotte H (2014) Engineered Lactobacillus rhamnosus GG expressing IgG-binding domains of protein G: Capture of hyperimmune bovine colostrum antibodies and protection against diarrhea in a mouse pup rotavirus infection model. Vaccine 32:470–477

    PubMed  Google Scholar 

  50. 50.

    Hanniffy S, Wiedermann U, Repa A, Mercenier A, Daniel C, Fioramonti J, Tlaskolova H, Kozakova H, Israelsen H, Madsen S (2004) Potential and opportunities for use of recombinant lactic acid bacteria in human health. Adv Appl Microbiol 56:1–64

    PubMed  Google Scholar 

  51. 51.

    He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J, Shan M, Chadburn A, Villanacci V, Plebani A (2007) Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26:812–826

    CAS  PubMed  Google Scholar 

  52. 52.

    Henriksen CM, Nilsson D, Hansen S, Johansen E (1999) Industrial applications of genetically modified microorganisms: gene technology at Chr Hansen A/S. Int Dairy J 9:17–23

    CAS  Google Scholar 

  53. 53.

    Hilpert H, Briissow H, Mietens C, Sidoti J, Lerner L, Werchau H (1987) Use of bovine milk concentrate containing antibody to rotavirus to treat rotavirus gastroenteritis in infants. J Infect Dis 156:158–166

    CAS  PubMed  Google Scholar 

  54. 54.

    Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    CAS  PubMed  Google Scholar 

  55. 55.

    Isanaka S, Guindo O, Langendorf C, Matar Seck A, Plikaytis BD, Sayinzoga-Makombe N, McNeal MM, Meyer N, Adehossi E, Djibo A, Jochum B, Grais RF (2017) Efficacy of a Low-Cost, Heat-Stable Oral Rotavirus Vaccine in Niger. N Engl J Med 376:1121–1130

    PubMed  Google Scholar 

  56. 56.

    ISMAIL B (2017) The use of probiotics as vaccine vectors to prevent viral infections. New Insights on Antiviral Probiotics. Springer, pp 47–60. https://doi.org/10.1007/1978-1003-1319-49688-49687_49682

  57. 57.

    Jalilvand S, Marashi SM, Shoja Z (2015) Rotavirus VP6 preparations as a non-replicating vaccine candidates. Vaccine 33:3281–3287

    CAS  PubMed  Google Scholar 

  58. 58.

    Jiang B, Gentsch JR, Glass RI (2008) Inactivated rotavirus vaccines: a priority for accelerated vaccine development. Vaccine 26:6754–6758

    CAS  PubMed  Google Scholar 

  59. 59.

    Jiang B, Wang Y, Saluzzo J-F, Bargeron K, Frachette M-J, Glass RI (2008) Immunogenicity of a thermally inactivated rotavirus vaccine in mice. Human Vaccin 4:143–147

    CAS  Google Scholar 

  60. 60.

    Kang JY, Lee DK, Ha NJ, Shin HS (2015) Antiviral effects of Lactobacillus ruminis SPM0211 and Bifidobacterium longum SPM1205 and SPM1206 on rotavirus-infected Caco-2 cells and a neonatal mouse model. J Microbiol 53:796–803

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Kapikian AZ, Kim HW, Wyatt RG, Rodriguez WJ, Ross S, Cline WL, Parrott RH, Chanock RM (1974) Reoviruslike agent in stools: association with infantile diarrhea and development of serologic tests. Science 185:1049–1053

    CAS  PubMed  Google Scholar 

  62. 62.

    Kawahara T, Makizaki Y, Oikawa Y, Tanaka Y, Maeda A, Shimakawa M, Komoto S, Moriguchi K, Ohno H, Taniguchi K (2017) Oral administration of Bifidobacterium bifidum G9–1 alleviates rotavirus gastroenteritis through regulation of intestinal homeostasis by inducing mucosal protective factors. PloS One 12:e0173979

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345

    CAS  Google Scholar 

  64. 64.

    Koh A, Bäckhed F (2020) From Association to Causality: the Role of the Gut Microbiota and Its Functional Products on Host Metabolism. Molecular Cell 78:584–596

    CAS  PubMed  Google Scholar 

  65. 65.

    Kovatcheva-Datchary P, Shoaie S, Lee S, Wahlström A, Nookaew I, Hallen A, Perkins R, Nielsen J, Bäckhed F (2019) Simplified intestinal microbiota to study microbe-diet-host interactions in a mouse model. Cell Rep 26(3772–3783):e3776

    Google Scholar 

  66. 66.

    Kumar M, Dhaka P, Vijay D, Vergis J, Mohan V, Kumar A, Kurkure NV, Barbuddhe SB, Malik S, Rawool DB (2016) Antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus against multidrug-resistant enteroaggregative Escherichia coli. Int J Antimicrob Agents 48:265–270

    CAS  PubMed  Google Scholar 

  67. 67.

    Kumar M, Ji B, Babaei P, Das P, Lappa D, Ramakrishnan G, Fox TE, Haque R, Petri WA, Bäckhed F (2018) Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: lessons from genome-scale metabolic modeling. Metabol Eng 49:128–142

    CAS  Google Scholar 

  68. 68.

    Land MH, Rouster-Stevens K, Woods CR, Cannon ML, Cnota J, Shetty AK (2005) Lactobacillus sepsis associated with probiotic therapy. Pediatrics 115:178–181

    PubMed  Google Scholar 

  69. 69.

    LeCureux JS, Dean GA (2018) Lactobacillus mucosal vaccine vectors: immune responses against bacterial and viral antigens. mSphere 3:e00061–00018

  70. 70.

    Lepault J, Petitpas I, Erk I, Navaza J, Bigot D, Dona M, Vachette P, Cohen J, Rey FA (2001) Structural polymorphism of the major capsid protein of rotavirus. EMBO J 20:1498–1507

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Li Y-j, Ma G-p, Li G-w, Qiao X-y, Ge J-w, Tang L-j, Liu M, Liu L-w (2010) Oral vaccination with the porcine rotavirus VP4 outer capsid protein expressed by Lactococcus lactis induces specific antibody production. BioMed Res Int 2010:708460

    Google Scholar 

  72. 72.

    Liévin-Le Moal V, Servin AL (2006) The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 19:315–337

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol Gastrointest Liver Physiol 276:G941–G950

  74. 74.

    Madhi SA, Cunliffe NA, Steele D, Witte D, Kirsten M, Louw C, Ngwira B, Victor JC, Gillard PH, Cheuvart BB, Han HH, Neuzil KM (2010) Effect of human rotavirus vaccine on severe diarrhea in African infants. N Engl J Med 362:289–298

    CAS  PubMed  Google Scholar 

  75. 75.

    Majamaa H, Isolauri E, Saxelin M, Vesikari T (1995) Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J Pediatric Gastroenterol Nutr 20:333–338

    CAS  Google Scholar 

  76. 76.

    Mäkivuokko H, Lahtinen SJ, Wacklin P, Tuovinen E, Tenkanen H, Nikkilä J, Björklund M, Aranko K, Ouwehand AC, Mättö J (2012) Association between the ABO blood group and the human intestinal microbiota composition. BMC Microbiol 12:94

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Makki K, Deehan EC, Walter J, Bäckhed F (2018) The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23:705–715

    CAS  PubMed  Google Scholar 

  78. 78.

    Mao X, Gu C, Hu H, Tang J, Chen D, Yu B, He J, Yu J, Luo J, Tian G (2016) Dietary Lactobacillus rhamnosus GG supplementation improves the mucosal barrier function in the intestine of weaned piglets challenged by porcine rotavirus. PloS One 11:e0146312

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Marashi SM, Jalilvand S, Mollaei-Kandelous Y, Shahmahmoodi S, Rezaei F, Salimi V, Nejati A, Validi M, Shoja Z (2014) Intra-peritoneal and intra-rectal immunogenicity induced by rotavirus virus like particles 2/6/7 in mice. Microb Pathogen 67–68:48–54

    Google Scholar 

  80. 80.

    Marelli B, Perez AR, Banchio C, de Mendoza D, Magni C (2011) Oral immunization with live Lactococcus lactis expressing rotavirus VP8* subunit induces specific immune response in mice. J Virolog Methods 175:28–37

    CAS  Google Scholar 

  81. 81.

    Massacand JC, Kaiser P, Ernst B, Tardivel A, Bürki K, Schneider P, Harris NL (2008) Intestinal bacteria condition dendritic cells to promote IgA production. PloS One 3:e2588

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Medina E, Guzmán CA (2001) Use of live bacterial vaccine vectors for antigen delivery: potential and limitations. Vaccine 19:1573–1580

    CAS  PubMed  Google Scholar 

  83. 83.

    Muñoz JAM, Chenoll E, Casinos B, Bataller E, Ramón D, Genovés S, Montava R, Ribes JM, Buesa J, Fàbrega J (2011) Novel probiotic Bifidobacterium longum subsp. infantis CECT 7210 strain active against rotavirus infections. Appl Environm Microbiol 77:8775–8783

    Google Scholar 

  84. 84.

    Nakamura Y, Terahara M, Iwamoto T, Yamada K, Asano M, Kakuta S, Iwakura Y, Totsuka M (2012) Upregulation of Polymeric Immunoglobulin Receptor Expression by the Heat-Inactivated Potential Probiotic Bifidobacterium bifidum OLB6378 in a Mouse Intestinal Explant Model. Scand J Immunol 75:176–183

    CAS  PubMed  Google Scholar 

  85. 85.

    Oberhelman RA, Gilman RH, Sheen P, Taylor DN, Black RE, Cabrera L, Lescano AG, Meza R, Madico G (1999) A placebo-controlled trial of Lactobacillus GG to prevent diarrhea in undernourished Peruvian children. J Pediatr 134:15–20

    CAS  PubMed  Google Scholar 

  86. 86.

    Olaya Galán N, Ulloa Rubiano J, Velez Reyes F, Fernandez Duarte K, Salas Cardenas S, Gutierrez Fernandez M (2016) In vitro antiviral activity of Lactobacillus casei and Bifidobacterium adolescentis against rotavirus infection monitored by NSP 4 protein production. J Appl Microbiol 120:1041–1051

    PubMed  Google Scholar 

  87. 87.

    Pant N, Hultberg A, Zhao Y, Svensson L, Pan-Hammarström Q, Johansen K, Pouwels PH, Ruggeri FM, Hermans P, Frenken L (2006) Lactobacilli expressing variable domain of llama heavy-chain antibody fragments (lactobodies) confer protection against rotavirus-induced diarrhea. J Infect Dis 194:1580–1588

    PubMed  Google Scholar 

  88. 88.

    Pant N, Marcotte H, Brüssow H, Svensson L, Hammarström L (2007) Effective prophylaxis against rotavirus diarrhea using a combination of Lactobacillus rhamnosus GG and antibodies. BMC Microbiol 7:1–9

    Google Scholar 

  89. 89.

    Parez N (2008) Rotavirus gastroenteritis: why to back up the development of new vaccines? Compar Immunol Microbiol Infect Dis 31:253–269

    Google Scholar 

  90. 90.

    Parker EP, Ramani S, Lopman BA, Church JA, Iturriza-Gomara M, Prendergast AJ, Grassly NC (2018) Causes of impaired oral vaccine efficacy in developing countries. Future Microbiol 13:97–118

    CAS  PubMed  Google Scholar 

  91. 91.

    Perez C, Eichwald C, Burrone O, De Mendoza D (2005) Rotavirus vp7 antigen produced by Lactococcus lactis induces neutralizing antibodies in mice. J Appl Microbiol 99:1158–1164

    CAS  PubMed  Google Scholar 

  92. 92.

    Plaza-Diaz J, Gomez-Llorente C, Fontana L, Gil A (2014) Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol WJG 20:15632

    CAS  PubMed  Google Scholar 

  93. 93.

    Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A (2019) Mechanisms of action of probiotics. Adv Nutr 10:S49–S66

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Pontes DS, De Azevedo MSP, Chatel J-M, Langella P, Azevedo V, Miyoshi A (2011) Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Prot Express Purif 79:165–175

    CAS  Google Scholar 

  95. 95.

    Preidis GA, Saulnier DM, Blutt SE, Mistretta T-A, Riehle KP, Major AM, Venable SF, Barrish JP, Finegold MJ, Petrosino JF (2012) Host response to probiotics determined by nutritional status of rotavirus-infected neonatal mice. J Pediatr Gastroenterol Nutr 55:299

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Qiao X, Li G, Wang X, Li X, Liu M, Li Y (2009) Recombinant porcine rotavirus VP4 and VP4-LTB expressed in Lactobacillus casei induced mucosal and systemic antibody responses in mice. BMC Microbiol 9:249

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Rangan KJ, Hang HC (2017) Biochemical mechanisms of pathogen restriction by intestinal bacteria. Trends Biochem Sci 42:887–898

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Ray P, Malik J, Singh RK, Bhatnagar S, Bahl R, Kumar R, Bhan MK (2003) Rotavirus nonstructural protein NSP4 induces heterotypic antibody responses during natural infection in children. J Infect Dis 187:1786–1793

    CAS  PubMed  Google Scholar 

  99. 99.

    Ringø E, Hoseinifar SH, Ghosh K, Doan HV, Beck BR, Song SK (2018) Lactic acid bacteria in finfish—An update. Front Microbiol 9:1818

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Rodríguez-Díaz J, Montava R, Viana R, Buesa J, Pérez-Martínez G, Monedero V (2011) Oral immunization of mice with Lactococcus lactis expressing the rotavirus VP8* protein. Biotechnol Lett 33:1169–1175

    PubMed  Google Scholar 

  101. 101.

    Rosales-Mendoza S, Angulo C, Meza B (2016) Food-grade organisms as vaccine biofactories and oral delivery vehicles. Trends Biotechnol 34:124–136

    CAS  PubMed  Google Scholar 

  102. 102.

    Rottiers P, De Smedt T, Steidler L (2009) Modulation of gut-associated lymphoid tissue functions with genetically modified Lactococcus lactis. Int Rev Immunol 28:465–486

    CAS  PubMed  Google Scholar 

  103. 103.

    Ruggeri FM, Greenberg HB (1991) Antibodies to the trypsin cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture. J Virol 65:2211–2219

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Ruiz-Palacios GM, Perez-Schael I, Velazquez FR, Abate H, Breuer T, Clemens SC, Cheuvart B, Espinoza F, Gillard P, Innis BL, Cervantes Y, Linhares AC, Lopez P, Macias-Parra M, Ortega-Barria E, Richardson V, Rivera-Medina DM, Rivera L, Salinas B, Pavia-Ruz N, Salmeron J, Ruttimann R, Tinoco JC, Rubio P, Nunez E, Guerrero ML, Yarzabal JP, Damaso S, Tornieporth N, Saez-Llorens X, Vergara RF, Vesikari T, Bouckenooghe A, Clemens R, De Vos B, O’Ryan M, Human Rotavirus Vaccine Study G (2006) Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med 354:11–22

    CAS  PubMed  Google Scholar 

  105. 105.

    Salazar-Lindo E, Miranda-Langschwager P, Campos-Sanchez M, Chea-Woo E, Sack RB (2004) Lactobacillus caseistrain GG in the treatment of infants with acute watery diarrhea: A randomized, double-blind, placebo controlled clinical trial [ISRCTN67363048]. BMC Pediatr 4:18

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Salminen MK, Rautelin H, Tynkkynen S, Poussa T, Saxelin M, Valtonen V, Järvinen A (2004) Lactobacillus bacteremia, clinical significance, and patient outcome, with special focus on probiotic L. rhamnosus GG. Clin Infect Dis 38:62–69

    PubMed  Google Scholar 

  107. 107.

    Sarker SA, Casswall TH, Mahalanabis D, Alam NH, Albert MJ, Brüssow H, Fuchs GJ, Hammerström L (1998) Successful treatment of rotavirus diarrhea in children with immunoglobulin from immunized bovine colostrum. Pediatr Infect Dis J 17:1149–1154

    CAS  PubMed  Google Scholar 

  108. 108.

    Serkedjieva J, Danova S, Ivanova I (2000) Antiinfluenza virus activity of a bacteriocin produced by Lactobacillus delbrueckii. Appl Biochem Biotechnol 88:285–298

    CAS  Google Scholar 

  109. 109.

    Shoja Z, Tagliamonte M, Jalilvand S, Mollaei-Kandelous Y, De Stradis A, Tornesello ML, Buonaguro FM, Buonaguro L (2015) Formation of self-assembled triple-layered rotavirus-like particles (tlRLPs) by constitutive co-expression of VP2, VP6, and VP7 in stably transfected high-five insect cell lines. J Med Virol 87:102–111

    CAS  PubMed  Google Scholar 

  110. 110.

    Shornikova A-V, Casas IA, Isolauri E, Mykkänen H, Vesikari T (1997) Lactobacillus reuteri as a therapeutic agent in acute diarrhea in young children. J Pediatr Gastroenterol Nutr 24:399–404

    CAS  PubMed  Google Scholar 

  111. 111.

    Sindhu KN, Sowmyanarayanan TV, Paul A, Babji S, Ajjampur SS, Priyadarshini S, Sarkar R, Balasubramanian K, Wanke CA, Ward HD (2014) Immune response and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: a randomized, double-blind, placebo-controlled trial. Clin Infect Dis 58:1107–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Soares‐Weiser K, Bergman H, Henschke N, Pitan F, Cunliffe N (2019) Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database System Rev 2019:CD008521

  113. 113.

    Szajewska H, Mrukowicz JZ (2001) Probiotics in the treatment and prevention of acute infectious diarrhea in infants and children: a systematic review of published randomized, double-blind, placebo-controlled trials. J Pediatr Gastroenterol Nutr 33:S17–S25

    CAS  PubMed  Google Scholar 

  114. 114.

    Szatraj K, Szczepankowska AK, Chmielewska-Jeznach M (2017) Lactic acid bacteria—promising vaccine vectors: possibilities, limitations, doubts. J Appl Microbiol 123:325–339

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Tate JE, Burton AH, Boschi-Pinto C, Steele AD, Duque J, Parashar UD, W-cGRS Network (2012) 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis 12:136–141

    PubMed  Google Scholar 

  116. 116.

    Temprana CF, Arguelles MH, Gutierrez NM, Barril PA, Esteban LE, Silvestre D, Mandile MG, Glikmann G, Castello AA (2018) Rotavirus VP6 protein mucosally delivered by cell wall-derived particles from Lactococcus lactis induces protection against infection in a murine model. PloS One 13:e0203700

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Temprana CF, Argüelles MH, Gutierrez NM, Barril PA, Esteban LE, Silvestre D, Mandile MG, Glikmann G, Castello AA (2018) Rotavirus VP6 protein mucosally delivered by cell wall-derived particles from Lactococcus lactis induces protection against infection in a murine model. PloS One 13:e0203700

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Thompson A, Van Moorlehem E, Aich P (2010) Probiotic-induced priming of innate immunity to protect against rotaviral infection. Probiot Antimicrob Prot 2:90–97

    Google Scholar 

  119. 119.

    Thouvenin E, Schoehn G, Rey F, Petitpas I, Mathieu M, Vaney M-C, Cohen J, Kohli E, Pothier P, Hewat E (2001) Antibody inhibition of the transcriptase activity of the rotavirus DLP: a structural view. J Mol Biol 307:161–172

    CAS  PubMed  Google Scholar 

  120. 120.

    Troeger C, Khalil IA, Rao PC, Cao S, Blacker BF, Ahmed T, Armah G, Bines JE, Brewer TG, Colombara DV, Kang G, Kirkpatrick BD, Kirkwood CD, Mwenda JM, Parashar UD, Petri WA Jr, Riddle MS, Steele AD, Thompson RL, Walson JL, Sanders JW, Mokdad AH, Murray CJL, Hay SI, Reiner RC Jr (2018) Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years. JAMA Pediatr 172:958–965

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Van Zyl WF, Deane SM, Dicks LM (2020) Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes 12:1831339

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Vandenbroucke K, Hans W, Van Huysse J, Neirynck S, Demetter P, Remaut E, Rottiers P, Steidler L (2004) Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 127:502–513

    CAS  PubMed  Google Scholar 

  123. 123.

    Vega CG, Bok M, Vlasova AN, Chattha KS, Gómez-Sebastián S, Nuñez C, Alvarado C, Lasa R, Escribano JM, Garaicoechea LL (2013) Recombinant monovalent llama-derived antibody fragments (VHH) to rotavirus VP6 protect neonatal gnotobiotic piglets against human rotavirus-induced diarrhea. PLoS Pathog 9:e1003334

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Vesikari T, Clark HF, Offit PA, Dallas MJ, DiStefano DJ, Goveia MG, Ward RL, Schodel F, Karvonen A, Drummond JE, DiNubile MJ, Heaton PM (2006) Effects of the potency and composition of the multivalent human-bovine (WC3) reassortant rotavirus vaccine on efficacy, safety and immunogenicity in healthy infants. Vaccine 24:4821–4829

    CAS  PubMed  Google Scholar 

  125. 125.

    Vesikari T, Matson DO, Dennehy P, Van Damme P, Santosham M, Rodriguez Z, Dallas MJ, Heyse JF, Goveia MG, Black SB, Shinefield HR, Christie CD, Ylitalo S, Itzler RF, Coia ML, Onorato MT, Adeyi BA, Marshall GS, Gothefors L, Campens D, Karvonen A, Watt JP, O’Brien KL, DiNubile MJ, Clark HF, Boslego JW, Offit PA, Heaton PM, Rotavirus E, Safety Trial Study T (2006) Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N Engl J Med 354:23–33

    CAS  PubMed  Google Scholar 

  126. 126.

    Villena J, Aso H, Kitazawa H (2014) Regulation of toll-like receptors-mediated inflammation by immunobiotics in bovine intestinal epitheliocytes: role of signaling pathways and negative regulators. Front Immunol 5:421

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Vincke C, Muyldermans S (2012) Introduction to heavy chain antibodies and derived Nanobodies. Single Domain Antibod 911:15–26

    CAS  Google Scholar 

  128. 128.

    Vizzi E, Calvino E, Gonzalez R, Perez-Schael I, Ciarlet M, Kang G, Estes MK, Liprandi F, Ludert JE (2005) Evaluation of serum antibody responses against the rotavirus nonstructural protein NSP4 in children after rhesus rotavirus tetravalent vaccination or natural infection. Clin Diagn Labor Immunol 12:1157–1163

    CAS  Google Scholar 

  129. 129.

    Vlasova AN, Kandasamy S, Chattha KS, Rajashekara G, Saif LJ (2016) Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Veterin Immunol Immunopathol 172:72–84

    CAS  Google Scholar 

  130. 130.

    Vlasova AN, Takanashi S, Miyazaki A, Rajashekara G, Saif LJ (2019) How the gut microbiome regulates host immune responses to viral vaccines. Curr Opin Virol 37:16–25

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Wachsman MB, López EM, Ramirez JA, Galagovsky LR, Coto CE (2000) Antiviral effect of brassinosteroids against herpes virus and arenaviruses. Antiviral Chem Chemotherapy 11:71–77

    CAS  Google Scholar 

  132. 132.

    Wachsman MB, Castilla V, de Ruiz Holgado AP, de Torres RA, Sesma F, Coto CE (2003) Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res 58:17–24

    CAS  PubMed  Google Scholar 

  133. 133.

    Wang H, Gao K, Wen K, Allen IC, Li G, Zhang W, Kocher J, Yang X, Giri-Rachman E, Li G-H (2016) Lactobacillus rhamnosus GG modulates innate signaling pathway and cytokine responses to rotavirus vaccine in intestinal mononuclear cells of gnotobiotic pigs transplanted with human gut microbiota. BMC Microbiol 16:1–14

    Google Scholar 

  134. 134.

    Wang Y, Azevedo M, Saif LJ, Gentsch JR, Glass RI, Jiang B (2010) Inactivated rotavirus vaccine induces protective immunity in gnotobiotic piglets. Vaccine 28:5432–5436

    CAS  PubMed  Google Scholar 

  135. 135.

    Ward RL, McNeal MM (2010) VP6: A candidate rotavirus vaccine. J Infect Dis 202:S101–S107

    CAS  PubMed  Google Scholar 

  136. 136.

    Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6:349–362

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Wen K, Tin C, Wang H, Yang X, Li G, Giri-Rachman E, Kocher J, Bui T, Clark-Deener S, Yuan L (2014) Probiotic Lactobacillus rhamnosus GG enhanced Th1 cellular immunity but did not affect antibody responses in a human gut microbiota transplanted neonatal gnotobiotic pig model. PloS One 9:e94504

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Wen K, Liu F, Li G, Bai M, Kocher J, Yang X, Wang H, Clark-Deener S, Yuan L (2015) Lactobacillus rhamnosus GG dosage affects the adjuvanticity and protection against rotavirus diarrhea in gnotobiotic pigs. J Pediatric Gastroenterol Nutr 60:834–843

    Google Scholar 

  139. 139.

    Wyszyńska A, Kobierecka P, Bardowski J, Jagusztyn-Krynicka EK (2015) Lactic acid bacteria—20 years exploring their potential as live vectors for mucosal vaccination. Appl Microbiol Biotechnol 99:2967–2977

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Yang Y, Pei J, Qin Z, Wei L (2019) Efficacy of probiotics to prevent and/or alleviate childhood rotavirus infections. J Funct Foods 52:90–99

    CAS  Google Scholar 

  141. 141.

    Yasui H, Kiyoshima J, Ushijima H (1995) Passive protection against rotavirus-induced diarrhea of mouse pups born to and nursed by dams fed Bifidobacterium breve YIT4064. J Infect Dis 172:403–409

    CAS  PubMed  Google Scholar 

  142. 142.

    Yin J-Y, Guo C-Q, Wang Z, Yu M-L, Gao S, Bukhari SM, Tang L-J, Xu Y-G, Li Y-J (2016) Directed chromosomal integration and expression of porcine rotavirus outer capsid protein VP4 in Lactobacillus casei ATCC393. Appl Microbiol Biotechnol 100:9593–9604

    CAS  PubMed  Google Scholar 

  143. 143.

    Yu J, Langridge WH (2001) A plant-based multicomponent vaccine protects mice from enteric diseases. Nat Biotechnol 19:548–552

    CAS  PubMed  Google Scholar 

  144. 144.

    Zaman K, Dang DA, Victor JC, Shin S, Yunus M, Dallas MJ, Podder G, Vu DT, Le TP, Luby SP, Le HT, Coia ML, Lewis K, Rivers SB, Sack DA, Schodel F, Steele AD, Neuzil KM, Ciarlet M (2010) Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial. Lancet 376:615–623

    CAS  PubMed  Google Scholar 

  145. 145.

    Zhang Z, Xiang Y, Li N, Wang B, Ai H, Wang X, Huang L, Zheng Y (2013) Protective effects of Lactobacillus rhamnosus GG against human rotavirus-induced diarrhoea in a neonatal mouse model. Pathog Dis 67:184–191

    PubMed  Google Scholar 

Download references

Funding

The present study was funded and supported by Pasteur Institute of Iran (Grant no. 881).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zabihollah Shoja.

Ethics declarations

Conflict of interest

The authors declare no conflicting financial or other interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Reimar Johne.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afchangi, A., Latifi, T., Jalilvand, S. et al. Combined use of lactic-acid-producing bacteria as probiotics and rotavirus vaccine candidates expressing virus-specific proteins. Arch Virol 166, 995–1006 (2021). https://doi.org/10.1007/s00705-021-04964-9

Download citation