Skip to main content
Log in

First investigation of the prevalence of parvoviruses in slaughterhouse pigs and genomic characterization of ungulate copiparvovirus 2 in Vietnam

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Ungulate protoparvovirus 1, also known as porcine parvovirus 1 (PPV1), is considered to be one of the major causes of reproductive failure in pig breeding herds. Other parvoviruses have also been identified in pigs, including ungulate tetraparvovirus 3, or PPV2, ungulate tetraparvovirus 2, or PPV3, and ungulate copiparvovirus 2, or PPV4, but their significance for pigs is unknown. In the present study, the prevalence of PPV1-4 was investigated using a total of 231 lung and serum samples collected from slaughterhouses in 13 provinces throughout Vietnam. The overall prevalence was 54.5% (126/231) for PPV1, 28.0% (65/231) for PPV2, 17.7% (41/231) for PPV3, and 7.8% (18/231) for PPV4. While PPV1 and PPV2 were found in 11 provinces, PPV4 was detected in only three provinces. Co-circulation of PPV1, PPV2 and PPV3 was frequently observed, with PPV1/PPV2 coinfection predominating, with 20.8% (48/231). All four PPVs were detected together in only one sample from Thua Thien Hue. Three nearly complete PPV4 genome sequences of 5,453 nt were determined and deposited in the GenBank database. Alignment and comparison of the three genome sequences showed 99.5-99.6% nucleotide sequence identity, and the deduced amino acid sequences of open reading frames 1-3 were 99.6-99.9% identical to each other, 98.9-99.3% identical to those of other Vietnamese strains and 99.4-99.7% identical to those of Chinese strains). Phylogenetic analysis further confirmed a close relationship between Vietnamese and Chinese PPV4 strains. These results are the first to report the prevalence of PPV1, PPV2, PPV3, and PPV4 and nearly complete genomic sequences of PPV4 in pigs from slaughterhouses in Vietnam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Molitor TW, Joo HS, Collett MS (1983) Porcine parvovirus: virus purification and structural and antigenic properties of virion polypeptides. J Virol 45:842–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bergeron J, Hebert B, Tijssen P (1996) Genome organization of the Kresse strain of porcine parvovirus: identification of the allotropic determinant and comparison with those of NADL-2 and field isolates. J Virol 70:2508–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tattersall P, Kerr JR, Cotmore SF, Bloom ME, Linden RM, and Parrish CR (2006) The evolution of parvovirus taxonomy. In: Parvoviruses (ed), p 10

  4. Cheung AK, Wu G, Wang D, Bayles DO, Lager KM, Vincent AL (2010) Identification and molecular cloning of a novel porcine parvovirus. Arch Virol 155:801–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilhelm S, Zimmermann P, Selbitz HJ, Truyen U (2006) Real-time PCR protocol for the detection of porcine parvovirus in field samples. J Virol Methods 134:257–260

    Article  CAS  PubMed  Google Scholar 

  6. Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Dempsey DM, Dutilh BE, Harrach B, Harrison RL, Hendrickson RC, Junglen S, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Nibert M, Orton RJ, Rubino L, Sabanadzovic S, Simmonds P, Smith DB, Varsani A, Zerbini FM, Davison AJ (2020) Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020). Arch Virol 2020:1–12

    Google Scholar 

  7. Mayr A, Mahnel H (1964) Cultivation of hog cholera virus in pig kidney cultures with cytopathogenic effect. Zentralbl Bakteriol Orig 195:157–166

    CAS  PubMed  Google Scholar 

  8. Mengeling WL, Lager KM, Vorwald AC (2000) The effect of porcine parvovirus and porcine reproductive and respiratory syndrome virus on porcine reproductive performance. Anim Reprod Sci 60–61:199–210

    Article  PubMed  Google Scholar 

  9. Hijikata M, Abe K, Win KM, Shimizu YK, Keicho N, Yoshikura H (2001) Identification of new parvovirus DNA sequence in swine sera from Myanmar. Jpn J Infect Dis 54:244–245

    CAS  PubMed  Google Scholar 

  10. Lau SKP, Woo PCY, Tse H, Fu CTY, Au WK, Chen XC, Tsoi HW, Tsang THF, Chan JSY, Tsang DNC, Li KSM, Tse CWS, Ng TK, Tsang OTY, Zheng BJ, Tam S, Chan KH, Zhou B, Yuen KY (2008) Identification of novel porcine and bovine parvoviruses closely related to human parvovirus 4. J Gen Virol 89:1840–1848

    Article  CAS  PubMed  Google Scholar 

  11. Xiao CT, Gimenez-Lirola LG, Jiang YH, Halbur PG, Opriessnig T (2013) Characterization of a novel porcine parvovirus tentatively designated PPV5. PLoS ONE 8:e65312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ni J, Qiao C, Han X, Han T, Kang W, Zi Z, Cao Z, Zhai X, Cai X (2014) Identification and genomic characterization of a novel porcine parvovirus (PPV6) in China. Virol J 11:203

    Article  PubMed  PubMed Central  Google Scholar 

  13. Palinski RM, Mitra N, Hause BM (2016) Discovery of a novel Parvovirinae virus, porcine parvovirus 7, by metagenomic sequencing of porcine rectal swabs. Virus Genes 52:564–567

    Article  CAS  PubMed  Google Scholar 

  14. Schirtzinger EE, Suddith AW, Hause BM, Hesse RA (2015) First identification of porcine parvovirus 6 in North America by viral metagenomic sequencing of serum from pigs infected with porcine reproductive and respiratory syndrome virus. Virol J 12:170

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cui J, Fan J, Gerber PF, Biernacka K, Stadejek T, Xiao CT, Opriessnig T (2017) First identification of porcine parvovirus 6 in Poland. Virus Genes 53:100–104

    Article  CAS  PubMed  Google Scholar 

  16. Ouh IO, Park S, Lee JY, Song JY, Cho IS, Kim HR, Park CK (2018) First detection and genetic characterization of porcine parvovirus 7 from Korean domestic pig farms. J Vet Sci 19:855–857

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xing X, Zhou H, Tong L, Chen Y, Sun Y, Wang H, Zhang G (2018) First identification of porcine parvovirus 7 in China. Arch Virol 163:209–213

    Article  CAS  PubMed  Google Scholar 

  18. Bovo S, Mazzoni G, Ribani A, Utzeri VJ, Bertolini F, Schiavo G, Fontanesi L (2017) A viral metagenomic approach on a non-metagenomic experiment: Mining next generation sequencing datasets from pig DNA identified several porcine parvoviruses for a retrospective evaluation of viral infections. PLoS ONE 12:e0179462

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cadar D, Lorincz M, Kiss T, Novosel D, Podgorska K, Becskei Z, Tuboly T, Csagola A (2013) Emerging novel porcine parvoviruses in Europe: origin, evolution, phylodynamics and phylogeography. J Gen Virol 94:2330–2337

    Article  CAS  PubMed  Google Scholar 

  20. Cadar D, Dan A, Tombacz K, Lorincz M, Kiss T, Becskei Z, Spinu M, Tuboly T, Csagola A (2012) Phylogeny and evolutionary genetics of porcine parvovirus in wild boars. Infect Genet Evol 12:1163–1171

    Article  PubMed  Google Scholar 

  21. Nguyen H, Tran DT (2000) Survey of some factors related to reproductive disorders in sows in Long An province. In: University of Agriculture and Forestry, Ho Chi Minh City, Vietnam

  22. Huang L, Zhai SL, Cheung AK, Zhang HB, Long JX, Yuan SS (2010) Detection of a novel porcine parvovirus, PPV4, in Chinese swine herds. Virol J 7:333

    Article  PubMed  PubMed Central  Google Scholar 

  23. Csagola A, Lorincz M, Cadar D, Tombacz K, Biksi I, Tuboly T (2012) Detection, prevalence and analysis of emerging porcine parvovirus infections. Arch Virol 157:1003–1010

    Article  CAS  PubMed  Google Scholar 

  24. Cadar D, Csagola A, Kiss T, Tuboly T (2013) Capsid protein evolution and comparative phylogeny of novel porcine parvoviruses. Mol Phylogenet Evol 66:243–253

    Article  CAS  PubMed  Google Scholar 

  25. Saekhow P, Ikeda H (2015) Prevalence and genomic characterization of porcine parvoviruses detected in Chiangmai area of Thailand in 2011. Microbiol Immunol 59:82–88

    Article  CAS  PubMed  Google Scholar 

  26. Saekhow P, Kishizuka S, Sano N, Mitsui H, Akasaki H, Mawatari T, Ikeda H (2016) Coincidental detection of genomes of porcine parvoviruses and porcine circovirus type 2 infecting pigs in Japan. J Vet Med Sci 77:1581–1586

    Article  PubMed  Google Scholar 

  27. Cui J, Biernacka K, Fan J, Gerber PF, Stadejek T, Opriessnig T (2017) Circulation of porcine parvovirus types 1 through 6 in serum samples obtained from six commercial polish pig farms. Transbound Emerg Dis 64:1945–1952

    Article  CAS  PubMed  Google Scholar 

  28. Afolabi KO, Iweriebor BC, Obi LC, Okoh AI (2019) Prevalence of porcine parvoviruses in some South African swine herds with background of porcine circovirus type 2 infection. Acta Trop 190:37–44

    Article  PubMed  Google Scholar 

  29. Ndze VN, Cadar D, Csagola A, Kisfali P, Kovacs E, Farkas S, Ngu AF, Esona MD, Dan A, Tuboly T, Banyai K (2013) Detection of novel porcine bocaviruses in fecal samples of asymptomatic pigs in Cameroon. Infect Genet Evol 17:277–282

    Article  PubMed  Google Scholar 

  30. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  31. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  32. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  34. Streck AF, Homeier T, Foerster T, Fischer S, Truyen U (2013) Analysis of porcine parvoviruses in tonsils and hearts from healthy pigs reveals high prevalence and genetic diversity in Germany. Arch Virol 158:1173–1180

    Article  CAS  PubMed  Google Scholar 

  35. Sun J, Huang L, Wei Y, Wang Y, Chen D, Du W, Wu H, Liu C (2015) Prevalence of emerging porcine parvoviruses and their co-infections with porcine circovirus type 2 in China. Arch Virol 160:1339–1344

    Article  CAS  PubMed  Google Scholar 

  36. Chung HC, Nguyen VG, Huynh TM, Park YH, Park KT, Park BK (2020) PCR-based detection and genetic characterization of porcine parvoviruses in South Korea in 2018. BMC Vet Res 16:113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Opriessnig T, Xiao CT, Gerber PF, Halbur PG (2014) Identification of recently described porcine parvoviruses in archived North American samples from 1996 and association with porcine circovirus associated disease. Vet Microbiol 173:9–16

    Article  CAS  PubMed  Google Scholar 

  38. Serena MS, Cappuccio JA, Metz GE, Aspitia CG, Dibarbora M, Calderon MG, Echeverria MG (2019) Detection and molecular characterization of porcine parvovirus in fetal tissues from sows without reproductive failure in Argentina. Heliyon 5:e02874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Afolabi KO, Iweriebor BC, Okoh AI, Obi LC (2019) Increasing diversity of swine parvoviruses and their epidemiology in African pigs. Infect Genet Evol 73:175–183

    Article  PubMed  PubMed Central  Google Scholar 

  40. Novosel D, Cadar D, Tuboly T, Jungic A, Stadejek T, Ait-Ali T, Csagola A (2018) Investigating porcine parvoviruses genogroup 2 infection using in situ polymerase chain reaction. BMC Vet Res 14:163

    Article  PubMed  PubMed Central  Google Scholar 

  41. Saekhow P, Mawatari T, Ikeda H (2014) Coexistence of multiple strains of porcine parvovirus 2 in pig farms. Microbiol Immunol 58:382–387

    Article  CAS  PubMed  Google Scholar 

  42. Sliz I, Vlasakova M, Jackova A, Vilcek S (2015) Characterization of porcine parvovirus type 3 and porcine circovirus type 2 in Wild Boars (Sus Scrofa) in Slovakia. J Wildl Dis 51:703–711

    Article  CAS  PubMed  Google Scholar 

  43. Tregaskis PL, Staines A, Gordon A, Sheridan P, McMenamy M, Duffy C, Collns PJ, Mooney MH, Lemon K (2020) Co-infection status of novel parvovirus’s (PPV2 to 4) with porcine circovirus 2 in porcine respiratory disease complex and porcine circovirus-associated disease from 1997 to 2012. Transbound Emerg Dis 2020:16

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Vietnam’s National Foundation for Science and Technology (NAFOSTED) under grant number 106-NN.05-2015.62. TO was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) through the Roslin Institute Strategic Programme “Control of Infectious Diseases” (BBS/E/D/20002173 and BBS/E/D/20002174). Thanks also to NAFOSTED funding for my two-month research at the Roslin Institute, and to Mrs. Holly Steven for her support during my stay at the Roslin Institute. The authors thank Ashley Mattei for critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NTDT, responsible for conception this study, laboratory work, and drafting the manuscript). NTT, sample collection from central provinces and assisting with genotyping experiments. TQD, sample collection from northern provinces and DNA extraction. DVAK, sample collection from southern provinces. TO, manuscript review; DTNT, assisting with sequencing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nguyen Thi Dieu Thuy.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Ana Cristina Bratanich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thuy, N.T.D., Trung, N.T., Dung, T.Q. et al. First investigation of the prevalence of parvoviruses in slaughterhouse pigs and genomic characterization of ungulate copiparvovirus 2 in Vietnam. Arch Virol 166, 779–788 (2021). https://doi.org/10.1007/s00705-020-04928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04928-5

Navigation