Skip to main content
Log in

Downregulation of miR-296-3p by highly pathogenic porcine reproductive and respiratory syndrome virus activates the IRF1/TNF-α signaling axis in porcine alveolar macrophages

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV, species Betaarterivirus suid 1 or 2) is a major pathogen affecting pigs on farms throughout the world. miR-296-3p is a multifunctional microRNA involved in the regulation of the inflammatory response in mice and humans. However, little is known about the biological functions of miR-296-3p in pigs. In this study, we used a highly pathogenic PRRSV-2 (species Betaarterivirus suid 2) strain to show that PRRSV infection robustly downregulates the expression of miR-296-3p in porcine alveolar macrophages (PAMs). Furthermore, we demonstrated that overexpression of miR-296-3p increases the replication of highly pathogenic (HP)-PRRSV in PAMs. Notably, the overexpression of miR-296-3p inhibited the induction of TNF-α, even with increased viral replication, compared with that in the HP-PRRSV-infected control group. We also demonstrated that miR-296-3p targets IRF1-facilitated viral infection and modulates the expression of TNF-α in PAMs during HP-PRRSV infection and that IRF1 regulates the expression of TNF-α by activating the TNF promoter via IRF1 response elements. In summary, these findings show that HP-PRRSV infection activates the IRF1/TNF-α signaling axis in PAMs by downregulating host miR-296-3p. This extends our understanding of the inflammatory response induced by HP-PRRSV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li H, Ouyang XP, Jiang T, Zheng XL, He PP, Zhao GJ (2018) MicroRNA-296: a promising target in the pathogenesis of atherosclerosis? Mol Med (Camb, Mass) 24(1):12. https://doi.org/10.1186/s10020-018-0012-y

    Article  CAS  Google Scholar 

  2. Zhai H, Sui M, Jiang L, Hu J, Jiang X, Yuan Y, Li M, Yu Z, Hu S (2016) MiR-296 promotes colorectal cancer cells growth through regulating NF-κB. Int J Clin Exp Pathol 9(4):4391–4396

    CAS  Google Scholar 

  3. Yoon AR, Gao R, Kaul Z, Choi IK, Ryu J, Noble JR, Kato Y, Saito S, Hirano T, Ishii T, Reddel RR, Yun CO, Kaul SC, Wadhwa R (2011) MicroRNA-296 is enriched in cancer cells and downregulates p21WAF1 mRNA expression via interaction with its 3′ untranslated region. Nucleic Acids Res 39(18):8078–8091. https://doi.org/10.1093/nar/gkr492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee H, Shin CH, Kim HR, Choi KH, Kim HH (2017) MicroRNA-296-5p promotes invasiveness through downregulation of nerve growth factor receptor and caspase-8. Mol Cells 40(4):254–261. https://doi.org/10.14348/molcells.2017.2270

    Article  CAS  PubMed  Google Scholar 

  5. Zhou X, Michal JJ, Jiang Z, Liu B (2017) MicroRNA expression profiling in alveolar macrophages of indigenous Chinese Tongcheng pigs infected with PRRSV in vivo. J Appl Genet 58(4):539–544. https://doi.org/10.1007/s13353-017-0410-9

    Article  CAS  PubMed  Google Scholar 

  6. Gulyaeva A, Dunowska M, Hoogendoorn E, Giles J, Samborskiy D, Gorbalenya AE (2017) Domain organization and evolution of the highly divergent 5′ coding region of genomes of arteriviruses, including the novel possum nidovirus. J Virol. https://doi.org/10.1128/jvi.02096-16

    Article  PubMed  PubMed Central  Google Scholar 

  7. Adams MJ, Lefkowitz EJ, King AMQ, Harrach B, Harrison RL, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Mushegian AR, Nibert M, Sabanadzovic S, Sanfaçon H, Siddell SG, Simmonds P, Varsani A, Zerbini FM, Gorbalenya AE, Davison AJ (2017) Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Arch Virol 162(8):2505–2538. https://doi.org/10.1007/s00705-017-3358-5

    Article  CAS  PubMed  Google Scholar 

  8. Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, Hu Y, Chen X, Hu D, Tian X, Liu D, Zhang S, Deng X, Ding Y, Yang L, Zhang Y, Xiao H, Qiao M, Wang B, Hou L, Wang X, Yang X, Kang L, Sun M, Jin P, Wang S, Kitamura Y, Yan J, Gao GF (2007) Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS One 2(6):e526. https://doi.org/10.1371/journal.pone.0000526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo B, Lager KM, Henningson JN, Miller LC, Schlink SN, Kappes MA, Kehrli ME Jr, Brockmeier SL, Nicholson TL, Yang HC, Faaberg KS (2013) Experimental infection of United States swine with a Chinese highly pathogenic strain of porcine reproductive and respiratory syndrome virus. Virology 435(2):372–384. https://doi.org/10.1016/j.virol.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  10. Hu SP, Zhang Z, Liu YG, Tian ZJ, Wu DL, Cai XH, He XJ (2013) Pathogenicity and distribution of highly pathogenic porcine reproductive and respiratory syndrome virus in pigs. Transbound Emerg Dis 60(4):351–359. https://doi.org/10.1111/j.1865-1682.2012.01354.x

    Article  CAS  PubMed  Google Scholar 

  11. Morgan SB, Frossard JP, Pallares FJ, Gough J, Stadejek T, Graham SP, Steinbach F, Drew TW, Salguero FJ (2016) Pathology and virus distribution in the lung and lymphoid tissues of pigs experimentally inoculated with three distinct type 1 PRRS virus isolates of varying pathogenicity. Transbound Emerg Dis 63(3):285–295. https://doi.org/10.1111/tbed.12272

    Article  CAS  PubMed  Google Scholar 

  12. Liu F, Du Y, Feng WH (2017) New perspective of host microRNAs in the control of PRRSV infection. Vet Microbiol 209:48–56. https://doi.org/10.1016/j.vetmic.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  13. An TQ, Li JN, Su CM, Yoo D (2020) Molecular and cellular mechanisms for PRRSV pathogenesis and host response to infection. Virus Res. https://doi.org/10.1016/j.virusres.2020.197980m

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Shi X, Zhang X, Wang A, Wang L, Yang Y, Deng R, Zhang GP (2017) MicroRNA 373 facilitates the replication of porcine reproductive and respiratory syndrome virus by its negative regulation of type I interferon induction. J Virol. https://doi.org/10.1128/jvi.01311-16

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu F, Wang H, Du L, Wei Z, Zhang Q, Feng WH (2018) MicroRNA-30c targets the interferon-alpha/beta receptor beta chain to promote type 2 PRRSV infection. J Gen Virol 99(12):1671–1680. https://doi.org/10.1099/jgv.0.001166

    Article  CAS  PubMed  Google Scholar 

  16. Qi P, Liu K, Wei J, Li Y, Li B, Shao D, Wu Z, Shi Y, Tong G, Qiu Y, Ma Z (2017) Nonstructural protein 4 of porcine reproductive and respiratory syndrome virus modulates cell surface swine leukocyte antigen class I expression by downregulating β2-microglobulin transcription. J Virol. https://doi.org/10.1128/jvi.01755-16

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shi Z, Wei J, Deng X, Li S, Qiu Y, Shao D, Li B, Zhang K, Xue F, Wang X, Ma Z (2014) Nitazoxanide inhibits the replication of Japanese encephalitis virus in cultured cells and in a mouse model. Virol J 11:10. https://doi.org/10.1186/1743-422x-11-10

    Article  PubMed  PubMed Central  Google Scholar 

  18. Neal LM, Qiu Y, Chung J, Xing E, Cho W, Malachowski AN, Sandysloat AR, Osterholzer JJ, Maillard I, Olszewski MA (2017) T cell–restricted notch signaling contributes to pulmonary Th1 and Th2 immunity during Cryptococcus neoformans infection. J Immunol 199(2):643–655

    Article  CAS  PubMed  Google Scholar 

  19. Ma F, Liu X, Li D, Wang P, Li N, Lu L, Cao X (2010) MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol 184(11):6053–6059. https://doi.org/10.4049/jimmunol.0902308

    Article  CAS  PubMed  Google Scholar 

  20. Qiu Y, Shen Y, Li X, Liu Q, Ma Z (2008) Polyclonal antibody to porcine p53 protein: a new tool for studying the p53 pathway in a porcine model. Biochem Biophys Res Commun 377(1):151–155. https://doi.org/10.1016/j.bbrc.2008.09.117

    Article  CAS  PubMed  Google Scholar 

  21. Messeguer X, Escudero R, Farré D, Núñez O, Martínez J, Albà MM (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics (Oxf, Engl) 18(2):333–334. https://doi.org/10.1093/bioinformatics/18.2.333

    Article  CAS  Google Scholar 

  22. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):R1. https://doi.org/10.1186/gb-2003-5-1-r1

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bao D, Wang R, Qiao S, Wan B, Wang Y, Liu M, Shi X, Guo J, Zhang G (2013) Antibody-dependent enhancement of PRRSV infection down-modulates TNF-α and IFN-β transcription in macrophages. Vet Immunol Immunopathol 156(1–2):128–134. https://doi.org/10.1016/j.vetimm.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  24. Van Reeth K, Labarque G, Nauwynck H, Pensaert M (1999) Differential production of proinflammatory cytokines in the pig lung during different respiratory virus infections: correlations with pathogenicity. Res Vet Sci 67(1):47–52. https://doi.org/10.1053/rvsc.1998.0277

    Article  PubMed  Google Scholar 

  25. Han D, Hu Y, Li L, Tian H, Chen Z, Wang L, Ma H, Yang H, Teng K (2014) Highly pathogenic porcine reproductive and respiratory syndrome virus infection results in acute lung injury of the infected pigs. Vet Microbiol 169(3–4):135–146. https://doi.org/10.1016/j.vetmic.2013.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang L, Liu J, Bai J, Wang X, Li Y, Jiang P (2013) Comparative expression of Toll-like receptors and inflammatory cytokines in pigs infected with different virulent porcine reproductive and respiratory syndrome virus isolates. Virol J 10:135. https://doi.org/10.1186/1743-422x-10-135

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li Y, Wu Z, Liu K, Qi P, Xu J, Wei J, Li B, Shao D, Shi Y, Qiu Y, Ma Z (2017) Proteomic analysis of the secretome of porcine alveolar macrophages infected with porcine reproductive and respiratory syndrome virus. Proteomics. https://doi.org/10.1002/pmic.201700080

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lu Y, Zhang Y, Xiang X, Sharma M, Liu K, Wei J, Shao D, Li B, Tong G, Olszewski MA, Ma Z, Qiu Y (2020) Notch signaling contributes to the expression of inflammatory cytokines induced by highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) infection in porcine alveolar macrophages. Dev Comp Immunol 108:103690. https://doi.org/10.1016/j.dci.2020.103690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang F, Lin X, Yang X, Lu G, Zhang Q, Zhang C (2019) MicroRNA-132-3p suppresses type I IFN response through targeting IRF1 to facilitate H1N1 influenza A virus infection. Biosci Rep. https://doi.org/10.1042/bsr20192769

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hazra B, Kumawat KL (2017) The host microRNA miR-301a blocks the IRF1-mediated neuronal innate immune response to Japanese encephalitis virus infection. Sci Signal 10(466):eaaf5185. https://doi.org/10.1126/scisignal.aaf5185

    Article  CAS  PubMed  Google Scholar 

  31. Xie Y, He S, Wang J (2018) MicroRNA-373 facilitates HSV-1 replication through suppression of type I IFN response by targeting IRF1. Biomed Pharmacother Biomed Pharmacother 97:1409–1416. https://doi.org/10.1016/j.biopha.2017.11.071

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported, in part, by the National Natural Science Foundation of China (31972693), the National Key R&D Program of China (2018YFD0500101), the Chinese Special Fund for Agro-Scientific Research in the Public Interest (no. 2020JB04), and the Elite Program of CAAS (to YQ).

Author information

Authors and Affiliations

Authors

Contributions

YQ conceived and designed the experiments; YZ performed the experiments; XX, YL, HL, AW, MS, KL, JW, ZL, DS, and BL contributed to the preparation of samples and reagents/materials; YZ, ZM, and YQ wrote the paper. All of the authors approved the final manuscript.

Corresponding authors

Correspondence to Zhiyong Ma or Yafeng Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Sheela Ramamoorthy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xiang, X., Lu, Y. et al. Downregulation of miR-296-3p by highly pathogenic porcine reproductive and respiratory syndrome virus activates the IRF1/TNF-α signaling axis in porcine alveolar macrophages. Arch Virol 166, 511–519 (2021). https://doi.org/10.1007/s00705-020-04921-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04921-y

Navigation