Skip to main content
Log in

Isolation and characterization of the novel Pseudomonas stutzeri bacteriophage 8P

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Bacteriophage 8P was isolated with a Pseudomonas stutzeri strain isolated from an oil reservoir as its host bacterium. The phage genome comprises 63,753 base pairs with a G+C content of 64.35. The phage encodes 63 predicted proteins, and 27 of them were functionally assigned. No tRNA genes were found. Comparative genomics analysis showed that 8P displayed some relatedness to F116-like phages (78% identity, 20% query coverage). The genome has very low sequence similarity to the other phage genomes in the GenBank database and Viral Sequence Database. Based on whole-genome analysis and transmission electron microscopy imaging, 8P is proposed to be a member of a new species in the genus Hollowayvirus, family Podoviridae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

The complete genome sequence of 8P is available in the GenBank database under accession number MT152150.

References

  1. Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, Rubin E, Ivanova NN, Kyrpides NC (2016) Uncovering Earth’s virome. Nature 536(7617):425. https://doi.org/10.1038/nature19094

    Article  CAS  PubMed  Google Scholar 

  2. Zrelovs N, Cernooka E, Dislers A, Kazaks A (2020) Isolation and characterization of the novel Virgibacillus-infecting bacteriophage Mimir87. Arch Virol 165(3):737–741. https://doi.org/10.1007/s00705-019-04516-2

    Article  CAS  PubMed  Google Scholar 

  3. Tang YQ, Li Y, Zhao JY, Chi CQ, Huang LX, Dong HP, Wu XL (2012) Microbial communities in long-term, water-flooded petroleum reservoirs with different in situ temperatures in the Huabei Oilfield, China. PLoS One 7(3):e33535. https://doi.org/10.1371/journal.pone.0033535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brunet-Galmes I, Busquets A, Pena A, Gomila M, Nogales B, Garcia-Valdes E, Lalucat J, Bennasar A, Bosch R (2012) Complete genome sequence of the naphthalene-degrading bacterium Pseudomonas stutzeri AN10 (CCUG 29243). J Bacteriol 194(23):6642–6643. https://doi.org/10.1128/Jb.01753-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yan YL, Yang J, Dou YT, Chen M, Ping SZ, Peng JP, Lu W, Zhang W, Yao ZY, Li HQ, Liu W, He S, Geng LZ, Zhang XB, Yang F, Yu HY, Zhan YH, Li DH, Lin ZL, Wang YP, Elmerich C, Lin M, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci USA 105(21):7564–7569. https://doi.org/10.1073/pnas.0801093105

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hou LL, Xia J, Li KY, Chen J, Wu XL, Li XQ (2013) Removal of ZnO nanoparticles in simulated wastewater treatment processes and its effects on COD and NH4+-N reduction. Water Sci Technol 67(2):254–260. https://doi.org/10.2166/wst.2012.530

    Article  CAS  PubMed  Google Scholar 

  7. Sun JQ, Xu L, Zhang Z, Li Y, Tang YQ, Wu XL (2014) Diverse bacteria isolated from microtherm oil-production water. Anton Leeuw Int J G 105(2):401–411. https://doi.org/10.1007/s10482-013-0088-x

    Article  CAS  Google Scholar 

  8. Hua YH, An XP, Pei GQ, Li SS, Wang W, Xu XM, Fan HH, Huang Y, Zhang ZY, Mi ZQ, Chen JK, Li JY, Zhang FX, Tong YG (2014) Characterization of the morphology and genome of an Escherichia coli podovirus. Arch Virol 159(12):3249–3256. https://doi.org/10.1007/s00705-014-2189-x

    Article  CAS  PubMed  Google Scholar 

  9. Zhang WH, Mi ZQ, Yin XY, Fan H, An XP, Zhang ZY, Chen JK, Tong YG (2013) Characterization of Enterococcus faecalis phage IME-EF1 and its endolysin. PLoS One 8(11):e80435. https://doi.org/10.1371/journal.pone.0080435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Byrne M, Kropinski AM (2005) The genome of the Pseudomonas aeruginosa generalized transducing bacteriophage F116. Gene 346:187–194. https://doi.org/10.1016/j.gene.2004.11.001

    Article  CAS  PubMed  Google Scholar 

  11. Pourcel C, Midoux C, Hauck Y, Vergnaud G, Latino L (2017) Large preferred region for packaging of bacterial DNA by phiC725A, a novel Pseudomonas aeruginosa F116-like bacteriophage. PLoS One 12(1):e0169684. https://doi.org/10.1371/journal.pone.0169684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chong L (2001) Molecular cloning—a laboratory manual, 3rd edition. Science 292(5516):446–446. https://doi.org/10.1126/science.1060677

    Article  CAS  Google Scholar 

  13. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29(12):2607–2618. https://doi.org/10.1093/nar/29.12.2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26(4):1107–1115. https://doi.org/10.1093/nar/26.4.1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  17. Lavigne R, Seto D, Mahadevan P, Ackermann HW, Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159(5):406–414. https://doi.org/10.1016/j.resmic.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  18. Lorenz L, Lins B, Barrett J, Montgomery A, Trapani S, Schindler A, Christie GE, Cresawn SG, Temple L (2013) Genomic characterization of six novel Bacillus pumilus bacteriophages. Virology 444(1–2):374–383. https://doi.org/10.1016/j.virol.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  19. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964. https://doi.org/10.1093/nar/25.5.955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kropinski AM, Waddell T, Meng JC, Franklin K, Ackermann HW, Ahmed R, Mazzocco A, Yates J, Lingohr EJ, Johnson RP (2013) The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5. Virol J 10(1):76. https://doi.org/10.1186/1743-422x-10-76

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kaliniene L, Truncaite L, Simoliunas E, Zajanckauskaite A, Vilkaityte M, Kaupinis A, Skapas M, Meskys R (2018) Molecular analysis of the low-temperature Escherichia coli phage vB_EcoS_NBD2. Arch Virol 163(1):105–114. https://doi.org/10.1007/s00705-017-3589-5

    Article  CAS  PubMed  Google Scholar 

  22. Tarkowski TA, Mooney D, Thomason LC, Stahl FW (2002) Gene products encoded in the ninR region of phage lambda participate in Red-mediated recombination. Genes Cells 7(4):351–363. https://doi.org/10.1046/j.1365-2443.2002.00531.x

    Article  CAS  PubMed  Google Scholar 

  23. Ravin V, Ravin N, Casjens S, Ford ME, Hatfull GF, Hendrix RW (2000) Genomic sequence and analysis of the atypical temperate bacteriophage N15. J Mol Biol 299(1):53–73. https://doi.org/10.1006/jmbi.2000.3731

    Article  CAS  PubMed  Google Scholar 

  24. Badawy S, Pajunen MI, Haiko J, Baka ZAM, Abou-Dobara MI, El-Sayed AKA, Skurnik M (2020) Identification and functional analysis of temperate Siphoviridae Bacteriophages of Acinetobacter baumannii. Viruses-Basel 12:6. https://doi.org/10.3390/v12060604

    Article  CAS  Google Scholar 

  25. Miller RV, Pemberton JM, Clark AJ (1977) Prophage F116—evidence for extrachromosomal location in Pseudomonas Aeruginosa strain pao. J Virol 22(3):844–847. https://doi.org/10.1128/Jvi.22.3.844-847.1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bruttin A, Desiere F, Lucchini S, Foley S, Brussow H (1997) Characterization of the lysogeny DNA module from the temperate Streptococcus thermophilus bacteriophage phi Sfi21. Virology 233(1):136–148. https://doi.org/10.1006/viro.1997.8603

    Article  CAS  PubMed  Google Scholar 

  27. Petrovski S, Seviour RJ, Tillett D (2011) Genome sequence and characterization of the Tsukamurella bacteriophage TPA2. Appl Environ Microb 77(4):1389–1398. https://doi.org/10.1128/Aem.01938-10

    Article  CAS  Google Scholar 

  28. Lhuillier S, Gallopin M, Gilquin B, Brasiles S, Lancelot N, Letellier G, Gilles M, Dethan G, Orlova EV, Couprie J, Tavares P, Zinn-Justin S (2009) Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating. Proc Natl Acad Sci USA 106(21):8507–8512. https://doi.org/10.1073/pnas.0812407106

    Article  PubMed  PubMed Central  Google Scholar 

  29. Garneau JR, Depardieu F, Fortier LC, Bikard D, Monot M (2017) PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep-Uk 7(1):8292. https://doi.org/10.1038/s41598-017-07910-5

    Article  CAS  Google Scholar 

  30. Oliveira L, Tavares P, Alonso JC (2013) Headful DNA packaging: bacteriophage SPP1 as a model system. Virus Res 173(2):247–259. https://doi.org/10.1016/j.virusres.2013.01.021

    Article  CAS  PubMed  Google Scholar 

  31. Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ (2001) Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microb 67(6):2746–2753. https://doi.org/10.1128/Aem.67.6.2746-2753.2001

    Article  CAS  Google Scholar 

  32. Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T (2002) Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184(1):290–301. https://doi.org/10.1128/Jb.184.1.290-301.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paez-Espino D, Pavlopoulos GA, Ivanova NN, Kyrpides NC (2017) Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat Protoc 12(8):1673–1682. https://doi.org/10.1038/nprot.2017.063

    Article  CAS  PubMed  Google Scholar 

  34. Zuo GH, Hao BL (2015) CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genom Proteom Bioinf 13(5):321–331. https://doi.org/10.1016/j.gpb.2015.08.004

    Article  Google Scholar 

  35. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27(7):1009–1010. https://doi.org/10.1093/bioinformatics/btr039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFA0902100 and 2018YFA0902103), and the National Natural Science Foundation of China (31761133006 to XLW).

Funding

This work was supported by the National Key R&D Program of China (2018YFA0902100 and 2018YFA0902103), and the National Natural Science Foundation of China (31761133006 to XLW).

Author information

Authors and Affiliations

Authors

Contributions

YN and X-LW designed research; XL and ZF performed research; XL, ZF, and XF analyzed data; the first draft of the manuscript was written by XL. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yong Nie or Xiao-Lei Wu.

Ethics declarations

Conflict of interest

The authors declare that this research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Johannes Wittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Feng, Z., Fan, X. et al. Isolation and characterization of the novel Pseudomonas stutzeri bacteriophage 8P. Arch Virol 166, 601–606 (2021). https://doi.org/10.1007/s00705-020-04912-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04912-z

Navigation