Skip to main content

Advertisement

Log in

Enterococcus phage Nonaheksakonda infecting clinical isolates of Enterococcus faecalis represents a new lineage in the family Siphoviridae

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Enterococcus phage Nonaheksakonda was isolated from wastewater, using a vancomycin-resistant strain of the opportunistic pathogen Enterococcus faecalis (VRE) as a host. Nonaheksakonda is a lytic phage infecting E. faecalis V583 and clinical isolates with at least four different multi-locus sequence types (MLSTs). The genome is a 41.9-kb double-stranded DNA molecule (34.6% GC) with 74 coding sequences. Comparative analysis revealed only one close relative, Enterococcus phage heks. All other phages had low protein similarity and shared less than 54% nucleotide sequence identity with phage Nonaheksakonda. The most similar phages were all classified and unclassified efquatroviruses. We propose that the phages Nonaheksakonda and heks represent a novel genus within the family Siphoviridae, order Caudovirales, for which we propose the name “Nonaheksakondavirus”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Van Tyne D, Gilmore MS (2014) Friend turned foe: Evolution of enterococcal virulence and antibiotic resistance. Annu Rev Microbiol 68:337–356

    Article  Google Scholar 

  2. Gilmore MS, Lebreton F, van Schaik W (2013) Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol 16:10–16

    Article  Google Scholar 

  3. Zou J, Shankar N (2016) The opportunistic pathogen Enterococcus faecalis resists phagosome acidification and autophagy to promote intracellular survival in macrophages. Cell Microbiol 18:831–843. https://doi.org/10.1111/cmi.12556

    Article  CAS  PubMed  Google Scholar 

  4. Creti R, Imperi M, Bertuccini L et al (2004) Survey for virulence determinants among Enterococcus faecalis isolated from different sources. J Med Microbiol 53:13–20. https://doi.org/10.1099/jmm.0.05353-0

    Article  CAS  PubMed  Google Scholar 

  5. Madsen KT, Skov MN, Gill S, Kemp M (2017) Virulence factors associated with Enterococcus faecalis infective endocarditis: a mini review. Open Microbiol J 11:1–11. https://doi.org/10.2174/1874285801711010001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prado ACC, De Barros PP, Dos SJD et al (2017) Enterococcus faecium and Enterococcus faecalis in endodontic infections: antibiotic resistance profile and susceptibility to photodynamic therapy. Lasers Dent Sci 1:91–99. https://doi.org/10.1007/s41547-017-0011-2

    Article  Google Scholar 

  7. Anderson AC, Andisha H, Hellwig E et al (2018) Antibiotic resistance genes and antibiotic susceptibility of oral Enterococcus faecalis isolates compared to isolates from hospitalized patients and food. Advances in experimental medicine and biology. Springer, New York LLC, pp 47–62

    Google Scholar 

  8. Caballero S, Kim S, Carter RA et al (2017) Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe 21:592-602.e4. https://doi.org/10.1016/j.chom.2017.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khalifa L, Brosh Y, Gelman D et al (2015) Targeting Enterococcus faecalis biofilms with phage therapy. Appl Environ Microbiol 81:2696–2705. https://doi.org/10.1128/AEM.00096-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gelman D, Beyth S, Lerer V et al (2018) Combined bacteriophages and antibiotics as an efficient therapy against VRE Enterococcus faecalis in a mouse model. Res Microbiol 169:531–539. https://doi.org/10.1016/j.resmic.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  11. Bolocan AS, Upadrasta A, De Almeida Bettio PH et al (2019) Evaluation of phage therapy in the context of Enterococcus faecalis and its associated diseases. Viruses 11:366. https://doi.org/10.3390/v11040366

    Article  CAS  PubMed Central  Google Scholar 

  12. Zhang H, Fouts DE, DePew J, Stevens RH (2013) Genetic modifications to temperate Enterococcus faecalis phage φEf11 that abolish the establishment of lysogeny and sensitivity to repressor, and increase host range and productivity of lytic infection. Microbiol (United Kingdom) 159:1023–1035. https://doi.org/10.1099/mic.0.067116-0

    Article  CAS  Google Scholar 

  13. Tinoco JM, Buttaro B, Zhang H et al (2016) Effect of a genetically engineered bacteriophage on Enterococcus faecalis biofilms. Arch Oral Biol 71:80–86. https://doi.org/10.1016/j.archoralbio.2016.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Proença D, Fernandes S, Leandro C et al (2012) Phage endolysins with broad antimicrobial activity against Enterococcus faecalis clinical strains. Microb Drug Resist 18:322–332. https://doi.org/10.1089/mdr.2012.0024

    Article  CAS  PubMed  Google Scholar 

  15. Olsen N, Hendriksen NB, Hansen L, Kot W (2020) A new high-throughput screening (HiTS) method for phages—enabling crude isolation and fast identification of diverse phages with therapeutic potential. Phage 1:137–148. https://doi.org/10.1101/2020.03.27.011080

    Article  Google Scholar 

  16. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  17. Brettin T, Davis JJ, Disz T et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. https://doi.org/10.1038/srep08365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679. https://doi.org/10.1093/bioinformatics/btm009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Besemer J (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618. https://doi.org/10.1093/nar/29.12.2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hildebrand A, Remmert M, Biegert A, Söding J (2009) Fast and accurate automatic structure prediction with HHpred. Proteins Struct Funct Bioinform 77:128–132. https://doi.org/10.1002/prot.22499

    Article  CAS  Google Scholar 

  21. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57. https://doi.org/10.1093/nar/gkw413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16. https://doi.org/10.1093/nar/gkh152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zankari E, Hasman H, Cosentino S et al (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. https://doi.org/10.1093/jac/dks261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Joensen KG, Scheutz F, Lund O et al (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52:1501–1510. https://doi.org/10.1128/JCM.03617-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kleinheinz KA, Joensen KG, Larsen MV (2014) Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage 4:e27943. https://doi.org/10.4161/bact.27943

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  Google Scholar 

  27. Ågren J, Sundström A, Håfström T, Segerman B (2012) Gegenees: fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS ONE 7:e39107. https://doi.org/10.1371/journal.pone.0039107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009. https://doi.org/10.1093/BIOINFORMATICS/BTR039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zafar N, Mazumder R, Seto D (2002) CoreGenes: a computational tool for identifying and cataloging “core” genes in a set of small genomes. BMC Bioinform 3:12. https://doi.org/10.1186/1471-2105-3-12

    Article  Google Scholar 

  30. Letarov AV, Kulikov EE (2018) Determination of the bacteriophage host range: Culture-Based approach. Methods in molecular biology. Humana Press Inc., USA, pp 75–84

    Google Scholar 

  31. Son JS, Jun SY, Kim EB et al (2010) Complete genome sequence of a newly isolated lytic bacteriophage, EFAP-1 of Enterococcus faecalis, and antibacterial activity of its endolysin EFAL-1. J Appl Microbiol 108:1769–1779. https://doi.org/10.1111/j.1365-2672.2009.04576.x

    Article  CAS  PubMed  Google Scholar 

  32. Yuan Y, Zhao F, Wang L et al (2019) Complete genome analysis of the novel Enterococcus faecalis phage vB_EfaS_AL3. Arch Virol 164:2599–2603. https://doi.org/10.1007/s00705-019-04341-7

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Wang W, Lv Y et al (2014) Characterization and complete genome sequence analysis of novel bacteriophage IME-EFm1 infecting Enterococcus faecium. J Gen Virol 95:2565–2575. https://doi.org/10.1099/vir.0.067553-0

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Shi H, Zhao C et al (2016) Complete genome sequence of the siphoviral bacteriophage Ec-ZZ2, which is capable of lysing Enterococcus faecium. Genome Announc 4:01167. https://doi.org/10.1128/genomeA.01167-16

    Article  Google Scholar 

  35. Neumann B, Prior K, Bender JK et al (2019) A core genome multilocus sequence typing scheme for Enterococcus faecalis. J Clin Microbiol 57:e1686. https://doi.org/10.1128/JCM.01686-18

    Article  Google Scholar 

  36. Ahmed MO, Baptiste KE (2018) Vancomycin-resistant enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist 24:590–606

    Article  CAS  Google Scholar 

  37. Park K, Jeong YS, Chang J et al (2020) Emergence of optrA-mediated linezolid-nonsusceptible Enterococcus faecalis in a tertiary care hospital. Ann Lab Med 40:322–325. https://doi.org/10.3343/alm.2020.40.4.321

    Article  Google Scholar 

  38. Alonso CA, Rezusta A, Seral C et al (2017) Persistence of a ST6 clone of Enterococcus faecalis genotype vanB2 in two Hospitals in Aragon (Spain). Enferm Infecc Microbiol Clin 35:578–581. https://doi.org/10.1016/j.eimc.2016.02.020

    Article  PubMed  Google Scholar 

  39. Farman M, Yasir M, Al-Hindi RR et al (2019) Genomic analysis of multidrug-resistant clinical Enterococcus faecalis isolates for antimicrobial resistance genes and virulence factors from the western region of Saudi Arabia. Antimicrob Resist Infect Control 8:55. https://doi.org/10.1186/s13756-019-0508-4

    Article  PubMed  PubMed Central  Google Scholar 

  40. Walker PJ, Siddell SG, Lefkowitz EJ et al (2019) Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified bythe International Committee on Taxonomy of Viruses (2019). Arch Virol 164:2417–2429. https://doi.org/10.1007/s00705-019-04306-w

    Article  CAS  PubMed  Google Scholar 

  41. Hasman H, Clausen PTLC, Kaya H et al (2019) LRE-Finder, a Web tool for detection of the 23S rRNA mutations and the optrA, cfr, cfr(B) and poxtA genes encoding linezolid resistance in enterococci from whole-genome sequences. J Antimicrob Chemother 74:1473–1476. https://doi.org/10.1093/jac/dkz092

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank senior scientist Henrik Hasman (Statens Serum Insittut, SSI) for supplying us with clinical isolates of Enterococcus faecalis, and Aalborg Forsyning Wastewater Treatment Plant East, a member of the Danish Water and Wastewater Association (DANVA), who supplied us with wastewater samples.

Funding

This research was funded by Villum Experiment Grant 17595, Aarhus University Research Foundation AUFF Grant E-2015-FLS-7-28 to Witold Kot, and Lars Hestbjerg Hansen’s Human Frontier Science Program Grant: RGP0024/2018.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Nikoline S. Olsen and Katrine Johansen Nielsen contributed equally. Material preparation, data collection and analysis were performed by Nikoline S. Olsen and Katrine Johansen Nielsen. The first draft of the manuscript was written by Katrine Johansen Nielsen, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nikoline S. Olsen or Lars Hestbjerg Hansen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest or competing interests.

Availability of data and material

The full genome sequences of Enterococcus phage Nonaheksakonda (MK125140) is available in the NCBI GenBank database.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Johannes Wittmann.

Supplementary Information

Below is the link to the electronic supplementary material.

705_2020_4905_MOESM1_ESM.pdf

Supplementary file1 Online resource 1: Putative functions and percent amino acid sequence identity (BLASTp) for 10 of the Nonaheksakonda coding sequences (CDS). Online resource 2: BLASTn hits for phage Nonaheksakonda with >35% nucleotide similarity. Online resource 3: Similarity heatplot (Gegenees, BLASTx algorithm) (PDF 414 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olsen, N.S., Nielsen, K.J., Plöger, M. et al. Enterococcus phage Nonaheksakonda infecting clinical isolates of Enterococcus faecalis represents a new lineage in the family Siphoviridae. Arch Virol 166, 593–599 (2021). https://doi.org/10.1007/s00705-020-04905-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04905-y

Navigation