Skip to main content
Log in

qPCR assay for the detection of pseudocowpox virus

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Pseudocowpox is a zoonosis caused by pseudocowpox virus (PCPV), which mainly affects cows but can be an occupational disease of humans. The aim of the study was to validate a quantitative polymerase chain reaction (qPCR) assay for the detection of PCPV. The assay was able to detect up to 1000 copies of PCPV per µL in field samples, with a sensitivity of 80% and a specificity of 100%. We did not observe any cross-reactivity between PCPV-positive samples and samples that were positive for other genetically similar viruses. The repeatability and reproducibility were adequate according to parameters preestablished in official test validation manuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hautaniemi M, Ueda N, Tuimala J et al (2010) The genome of Pseudocowpoxvirus: comparison of a reindeer isolate and a reference strain. J Gen Virol 91:1560–1576. https://doi.org/10.1099/vir.0.018374-0

    Article  CAS  PubMed  Google Scholar 

  2. Nagarajan G, Swami SK, Dahiya SS et al (2015) Characterization of GM-CSF-inhibitory factor and uracil DNA glycosylase encoding genes from camel Pseudocowpoxvirus. Res Vet Sci 100:291–296

    Article  CAS  Google Scholar 

  3. Black W, Walburger MT, Ostertag-hill C, Reed A (2014) Identification of Pseudocowpox virus in angus bull with failure to breed. Austin Virol Retrovirol 1:1–5

    Article  Google Scholar 

  4. Fairley RA, Mercer AA, Copland CI et al (2013) Persistent Pseudocowpox virus infection of the skin of a foot in a cat. N Z Vet J 61:242–243. https://doi.org/10.1080/00480169.2012.757728

    Article  CAS  PubMed  Google Scholar 

  5. Roess AA, McCollum AM, Gruszynski K et al (2013) Surveillance of Parapoxvirus among ruminants in Virginia and Connecticut. Zoonoses Public Health 60:543–548. https://doi.org/10.1111/zph.12036

    Article  CAS  PubMed  Google Scholar 

  6. Cargnelutti JF, Santos BS, Lebre S, das N, et al (2014) Pseudovaríola e estomatite papular em bovinos no Estado de Rondônia, Brasil. Ciência Rural 44:479–485. https://doi.org/10.1590/S0103-84782014000300015

    Article  Google Scholar 

  7. Abrahão JS, Lima LS, Assis FL et al (2009) Nested-multiplex PCR detection of Orthopoxvirus and Parapoxvirus directly from exanthematic clinical samples. Virol J 6:1–5. https://doi.org/10.1186/1743-422X-6-140

    Article  CAS  Google Scholar 

  8. Barravieira SRCS (2014) Diseases caused by Poxvirusorf and milker’s nodules—a review. J Venom Anim Toxins incl Trop Dis 11:102–108

    Google Scholar 

  9. Lederman E, Khan SU, Luby S et al (2014) Zoonotic parapoxviruses detected in symptomatic cattle in Bangladesh. BMC Res Notes 816:1–7

    Google Scholar 

  10. Orguzoglu TC, Koc BT, Kirdeci A, Tan MT (2014) Evidence of zoonotic Pseudocowpox virus infection from a cattle in Turkey. Virus Dis 25:381–384. https://doi.org/10.1007/s13337-014-0214-z

    Article  Google Scholar 

  11. Abrahão JS, Silva-Fernandes AT, Assis FL et al (2010) Human Vaccinia virus and Pseudocowpox virus co-infection: clinical description and phylogenetic characterization. J Clin Virol 48:69–72. https://doi.org/10.1016/j.jcv.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  12. Alves PA, Figueiredo PO, de Oliveira CHS et al (2016) Occurrence of Pseudocowpox virus associated to Bovine viral diarrhea virus-1, Brazilian Amazon. Comp Immunol Microbiol Infect Dis 49:70–75. https://doi.org/10.1016/j.cimid.2016.09.005

    Article  PubMed  Google Scholar 

  13. Cargnelutti JF, Flores MM, Teixeira FRM et al (2015) An outbreak of pseudocowpox in fattening calves in southern Brazil. J Vet Diagn Investig 24:437–441. https://doi.org/10.1177/1040638711435408

    Article  Google Scholar 

  14. Laguardia-nascimento M, Sales ÉB, Gasparini MR et al (2016) Detection of multiple viral infections in cattle and buffalo with suspected vesicular disease in Brazil. J Vet Diagn Investig 28:377–381. https://doi.org/10.1177/1040638716645836

  15. Laguardia-Nascimento M, de Oliveira APF, Fernandes FRP et al (2017) Detection of Pseudocowpox virus in water buffalo (Bubalus bubalis) with vesicular disease in the state of São Paulo, Brazil, in 2016. Vet Q 37:16–22. https://doi.org/10.1080/01652176.2016.1252479

    Article  PubMed  Google Scholar 

  16. Lobato JFP, Freitas AK, Devincenzi T et al (2014) Brazilian beef produced on pastures: Sustainable and healthy. Meat Sci 98:336–345. https://doi.org/10.1016/j.meatsci.2014.06.022

    Article  CAS  PubMed  Google Scholar 

  17. Inoshima Y, Morooka A, Sentsui H (2000) Detection and diagnosis of Parapoxvirus by the polymerase chain reaction. J Virol Methods 84:201–208. https://doi.org/10.1016/S0166-0934(99)00144-5

    Article  CAS  PubMed  Google Scholar 

  18. Schatzmayr HG, Sampaio De Lemos ER, Mazur C et al (2000) Detection of Poxvirus in cattle associated with human cases in the State of Rio de Janeiro: preliminary report. Mem Inst Oswaldo Cruz 95:625–627. https://doi.org/10.1590/S0074-02762000000500007

    Article  CAS  PubMed  Google Scholar 

  19. Navarro E, Serrano-Heras G, Castaño MJ, Solera J (2015) Real-time PCR detection chemistry. Clin Chim Acta 439:231–250. https://doi.org/10.1016/j.cca.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  20. OIE (2019) Manual of diagnostic tests and vaccines for terrestrial animals. Chapter 2.2.3, 9th edn. https://www.oie.int/standard-setting/terrestrial-manual/. Accessed 8 Aug 2020

  21. Brasil.MAPA (2015) Manual de verificação de desempenho de métodos para diagnóstico molecular de doenças infecciosas na rede nacional de laboratórios agropecuários. https://www.gov.br/agricultura/pt-br/assuntos/laboratorios/arquivos-publicacoes-laboratorio/biomol_final_baixa.pdf . Accessed 8 Aug 2020

  22. Fonseca Júnior AA, Cotorello AC, Dias NL et al (2013) PCR em tempo real para detecção do vírus da doença de Aujeszky. Arq Bras Med Vet e Zootec 65:801–808. https://doi.org/10.1590/s0102-09352013000300028

    Article  Google Scholar 

  23. Souza FA, dos Santos Júnior EM, Laguardia-Nascimento M et al (2019) Validation of a real-time PCR assay for detection of Swinepox virus. Arch Virol 164:3059–3063. https://doi.org/10.1007/s00705-019-04403-w

    Article  CAS  PubMed  Google Scholar 

  24. Vandemeulebroucke E, De Clercq K, Van der Stede Y, Vandenbussche F (2010) A proposed validation method for automated nucleic acid extraction and RT-qPCR analysis: An example using Bluetongue virus. J Virol Methods 165:76–82. https://doi.org/10.1016/j.jviromet.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  25. Nascimento S, Suarez ER, Pinhal MAS (2014) Tecnologia de PCR e RT-PCR em tempo real e suas aplicações na área médica. Rev Bras Med 67:1–5

  26. Zhao H, Wilkins K, Damon IK (2013) Yu L (2013) Specific qPCR assays for the detection of orf virus, pseudocowpox virus and bovine papular stomatitis virus. J Virol Methods 194(1–2):229–234. https://doi.org/10.1016/j.jviromet.2013.08.027

    Article  CAS  PubMed  Google Scholar 

  27. de Oliveira AM, Fonseca AA, Camargos MF et al (2018) Development and validation of rt-qpcr for Vesicular stomatitis virus detection (Alagoas vesiculovirus). J Virol Methods 257:7–11. https://doi.org/10.1016/j.jviromet.2018.03.011

    Article  CAS  PubMed  Google Scholar 

  28. Lázaro Sales M, Dall’Agnol M, de Oliveira AM et al (2020) RT-qPCR for the diagnosis of the Vesiculovirus Cocal virus. Arch Virol. https://doi.org/10.1007/s00705-020-04668-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministério da Agricultura Pecuária e Abastecimento – MAPA, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG - grant no. APQ-03403-18). JKPR and GST are CNPq fellow recipients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenner Karlisson Pimenta dos Reis.

Ethics declarations

Conflict of interest

The authors have no potential conflicts of interest to declare.

Ethical approval

This article does not contain studies with human participants or the handling of live animals.

Additional information

Handling Editor: William G Dundon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Lopes, G.A., Ferreira, L.R., de Souza Trindade, G. et al. qPCR assay for the detection of pseudocowpox virus. Arch Virol 166, 243–247 (2021). https://doi.org/10.1007/s00705-020-04872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04872-4

Navigation