Skip to main content

Advertisement

Log in

Intrinsic resistance of Enterococcus faecalis strains to ΦEf11 phage endolysin is associated with the presence of ΦEf11 prophage

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The use of bacteriophage-encoded murein hydrolases (endolysins) is being actively explored as a means of controlling multidrug-resistant pathogens. Previously, we isolated and characterized one such enzyme, the phage ΦEf11 ORF28 lysin, which demonstrated profound antimicrobial activity against many strains of Enterococcus faecalis. Although the lysin is eminently active against many vancomycin-resistant enterococal (VRE) strains, and displays lower minimum inhibitory concentrations than vancomycin against vancomycin-sensitive strains, there is a subset of E. faecalis strains that is not affected by the lysin. Currently, there is no explanation for the disparate sensitivity to ORF28 lysin among E. faecalis strains. In the present investigation, we show that the intrinsic insensitivity of the insusceptible strains to the lysin is associated with the presence of a ΦEf11 prophage. Of the strains harboring phage ΦEf11 genes (N = 28), 68% were insensitive to the lysin, whereas 91% of the strains (N = 75) lacking detectable ΦEf11 genes demonstrated lysin sensitivity. Furthermore, curing a lysin-resistant, lysogenic E. faecalis strain resulted in a lysin-sensitive derivative, whereas lysogenizing a wild-type non-lysogenic strain converted it from lysin sensitivity to lysin resistance. Our results suggest that lysin resistance comes about through lysogenic conversion of non-lysogenic, lysin-sensitive strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Becker SC, Dong S, Baker JR, Foster-Frey J, Pritchard DG, Donovan DM (2009) LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol Lett 294:52–60

    CAS  PubMed  Google Scholar 

  2. Gupta R, Prasad Y (2011) P-27/HP Endolysin as antibacterial agent for antibiotic resistant Staphylococcus aureus of human infections. Curr Microbiol 63:39–45

    CAS  PubMed  Google Scholar 

  3. Nelson D, Loomis L, Fischetti V (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. PNAS 98(7):4107–4112

    CAS  PubMed  Google Scholar 

  4. Loeffler J, Fischetti V (2003) Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Antimicrob Agents Chemother 47(1):375–377

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jado I, Lopez R, Garcia E, Fenoll A, Casal J, Garcia P (2003) Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother 52:967–973

    CAS  PubMed  Google Scholar 

  6. Blazquez B, Fresco-Taboada A, Iglesias-Bexiga M, Menendez M, Garcia P (2016) PL3 amidase, tailor-made lysin constructed by domain shuffling with potent killing activity against pneumococci and related species. Front Microbiol 7(1156):1–13

    Google Scholar 

  7. Briers Y, Walmagh M, Grymonprez B, Biebl M, Pirnay J, Defraine V, Michiels J, Cenens W, Aertsen A, Miller S, Lavigne R (2014) Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob Agents Chermother 58(7):3774–3784

    Google Scholar 

  8. Peng S, You R, Lai M, Lin N, Chen L, Chang K (2017) Highly potent antimicrobial modified peptides derived from the Acinetobacter baummannii phage endolysin LysAB2. Scientific Reports 7:11477

    PubMed  PubMed Central  Google Scholar 

  9. Schuch R, Nelson D, Fischetti V (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884–889

    CAS  PubMed  Google Scholar 

  10. Fischetti V (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13(10):491–496

    CAS  PubMed  Google Scholar 

  11. Loessner M (2005) Bacteriophage endolysins—current state of research and applications. Curr Opin Microbiol 8:480–487

    CAS  Google Scholar 

  12. Borysowski J, Weber-Dabrowska B, Gorski A (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol and Med 231(4):366–377

    CAS  Google Scholar 

  13. Hermoso J, Garcia J, Garcia P (2007) Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Microbiol 10:461–472

    CAS  Google Scholar 

  14. Nelson D, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard D, Dong S, Donovan D (2012) Endolysins as antimicrobials. Adv Virus Res 83:299–365

    CAS  PubMed  Google Scholar 

  15. Zhang H, Buttaro BA, Fouts DE, Sanjari S, Evans BS, Stevens RH (2019) Bacteriophage ϕEf11ORF28 endolysin, a multifunctional lytic enzyme with properties distinct from all other identified Enterococcus faecalis phage endolysins. Appl Environ Microbiol 85(13):e00555-e619

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmelcher M, Korobova O, Schischkova N, Kiseleva N, Kopylov P, Pryamchuk S, Donovan DM, Abaev I (2012) Ataphylococus haemolyticus prophage φSH2 endolysin relies on cysteine, histidine-dependent amidohydrolases/peptidases activity for lysis ‘from without.’ J Bacteriol 162:289–298

    CAS  Google Scholar 

  17. Siqueira JF Jr, Rocas IN (2004) Polymerase chain reaction-based analysis of microorganisms associated with failed endodontic treatment. Oral Surg oral med Oral Pathol Oral Radiol Endod 97:85–94

    PubMed  Google Scholar 

  18. Zhang H, Fouts DE, DePew J, Stevens RH (2013) Genetic modifications to temperate Enterococcus faecalis phage ϕEf11 that abolish the establishment of lysogeny and sensitivity to repressor, and increase host range and productivity of lytic infection. Microbiology 159:1023–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lopez R, Garcia E, Garcia P, Garcia J (1997) The pneumococcal cell wall degrading enzymes: a modular design to create new lysins? Microb Drug Res 3(2):199–211

    CAS  Google Scholar 

  20. Loessner M, Kramer K, Ebel F, Scherer S (2002) C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol 44(2):335–349

    CAS  PubMed  Google Scholar 

  21. Lopez R, Garcia E (2004) Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 28:553–580

    CAS  PubMed  Google Scholar 

  22. Garcia J, Garcia E, Arraras A, Garcia P, Ronda C, Lopez R (1987) Cloning, purification, and biochemical characterization of the pneumococcal bacteriophage Cp-1 Lysin. J Virol 61(8):2573–2580

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sheehan MM, Garcia JL, Lopez R, Garcia P (1997) The Lytic enzyme of the pneumococcal phage Dp-1: a chimeric lysin of intergeneric origin. Mol Microbiol 25(4):717–725

    CAS  PubMed  Google Scholar 

  24. Mo K, Li X, Li H, Low L, Quinn C, Boons G (2012) Endolysins of Bacillus anthracis bacteriophages recognize unique carbohydrate epitopes of vegetative cell wall polysaccharides with high affinity and selectivity. J Am Chem Soc 134(37):15556–15562

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ganguly J, Low L, Kamal N, Saile E, Forsberg S, Gutierrez-Sanchez G, Hoffmaster A, Liddington R, Quinn C, Carlson R, Kannenberg E (2013) The secondary cell wall polysaccharide of Bacillus anthracis provides the specific binding ligand for the C-terminal cell wall-binding domain of two phage endolysins PlyL PlyG. Glycobiology 23(7):820–832

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmelcher M, Shabarova T, Eugster MR, Eichenseher F, Tchang VS, Banz M, Loessner MJ (2010) Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. Appl Environ Microbiol 76(17):5745–5756

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Eugster M, Haug M, Huwiler S, Loessner M (2011) The cell wall binding domain of Listeria bacteriophage endolysin PlyP35 recognizes terminal GlcNAc residues in cell wall teichoic acid. Mol Microbiol 81(6):1419–1432

    CAS  PubMed  Google Scholar 

  28. Bera A, Herbert S, Jakob A, Vollver W, Gotz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55(3):778–787

    CAS  PubMed  Google Scholar 

  29. Vollmer W, Tomasz A (2002) Peptidoglycan N-acetylglucosamine deacetylase, a putative virulence factor in Streptococcus pneumoniae. Infect Immun 70(12):7176–7178

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Varahan S, Iyer VS, Moore WT, Hancock LE (2013) Eep confers lysozyme resistance to Enterococcus faecalis via the activation of the extracytoplasmic function sigma factor sigV. J Bacteriol 195(14):3125–3134

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Le Minor L (1963) Conversions antigeniques chez les Salmonella. Annales de l’Institut Pasteur 105(6):879–896

    Google Scholar 

  32. Girard R, Staub A (1972) Analyses chimiques des polyosides extraits de Salmonella johannesburg 5 58 Sauvage et Convertie par le Phage φ 1(40). Carbohyd Res 24:457–473

    CAS  Google Scholar 

  33. Chaby R, Girard R (1980) Adsorption and endo-glycosidase activity of phage φ 1 (40) on Salmonella johannesburg O-polysaccharide. J Virol 105:136–147

    CAS  Google Scholar 

  34. Davies M, Broadbent S, Harris S, Thomson N, Van der Woude M (2013) Horizontally acquired glycosyltransferase operons drive Salmonellae lipopolysaccharide diversity. PLoS Genet 9(6):1–13

    Google Scholar 

  35. Losick R (1969) Isolation of a trypsin-sensitive inhibitor of O-antigen synthesis involved in lysogenic conversion by bacteriophage ε15. J Mol Biol 42:237–246

    CAS  PubMed  Google Scholar 

  36. Robbins PW, Uchida T (1962) Studies on the chemical basis of the phage conversion of O-antigens in the E-Group Salmonellae. Biochem 1(2):323–335

    CAS  Google Scholar 

  37. Robbins PW, Keller JM, Wright A, Bernstein RI (1965) Enzymatic and kinetic studies on the mechanism of O-antigen conversion by bacteriophage ε15. J Biol Chem 240(1):384–390

    CAS  PubMed  Google Scholar 

  38. Gemski P, Koeltzow D, Formal S (1975) Phage conversion of Shigella flexneri group antigens. Infect Immun 11(4):685–691

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Verma NK, Brandt JM, Verma DJ, Lindberg AA (1991) Molecular characterization of the O-acetyl transferase gene of converting bacteriophage SF6 that adds group antigen 6 to Shigella flexneri. Mol Microbiol 5(1):71–75

    CAS  PubMed  Google Scholar 

  40. Liu P (1969) Changes in somatic antigens of Pseudomonas aeruginosa induced by bacteriophages. J Infect Dis 119(3):237–246

    CAS  PubMed  Google Scholar 

  41. Ogg J, Shrestha M, Poudayl L (1978) Phage-induced changes in Vibrio cholerae: Serotype and biotype conversions. Infect Immun 19(1):231–238

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tomas JM, Kay WW (1984) Effect of bacteriophage P1 lysogeny on lipopolysaccharide composition and the Lambda receptor of Escherichia coli. J Bacteriol 159(3):1047–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gerlach D, Guo Y, De Castro C, Kim S-H, Schlatterer K, Xu F-F, Pereira C, Seeberger PH, Ali S, Codée J, Sirisarn W, Schulte B, Wolz C, Larsen J, Molinaro A, Lee BL, Xia G, Stehle T, Peschel A (2018) Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature 563:705–709

    CAS  PubMed  Google Scholar 

  44. Gilmore MS, Miller OK (2018) A bacterium’s enemy isn’t your friend. Nature 563:637–638

    CAS  PubMed  Google Scholar 

  45. Abrams A (1958) O-Acetyl groups in the cell wall of Streptococcus faecalis. J Biol Chem 230:949–959

    CAS  PubMed  Google Scholar 

  46. Elliott S (1960) Type and group polysaccharides of group D Streptococci. J Exp Med 111(5):621–630

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pazur J, Anderson J, Karakawa W (1971) Glycans from Streptococcal cell walls. Immunological and chemical properties of a new diheteroglycan from Streptococcus faecalis. J Biol Chem 246(6):1793–1798

    CAS  PubMed  Google Scholar 

  48. Pazur J, Cepure A, Kane J (1973) Glycans from Streptococcal walls. The molecular structure of an antigenic diheteroglycan of glucose and galactose from Streptococcus faecalis. J Biol Chem 248(1):279–284

    CAS  PubMed  Google Scholar 

  49. Theilacker C, Kaczynski Z, Kropec A, Sava I, Ye L, Bychowska A, Hoist O, Huebner J (2011) Serodiversity of opsonic antibodies against Enterococcus faecalis -Glycans of the cell wall revisited. PLoS ONE 6(3):e17839

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wicken AJ, Elliot SD, Baddiley J (1963) The identity of streptococcal group D antigen with teichoic acid. J Gen Microbiol 31:231–239

    CAS  PubMed  Google Scholar 

  51. Wang Y, Huebner J, Tzianabos AO, Marirosian G, Kasper DL, Pier GB (1999) Structure of antigenic teichoic acid shared by clinical isolates of Enterococcus faecalis and vancomycin-resistant Enterococcus faecium. Carbohydr Res 316:155–160

    CAS  PubMed  Google Scholar 

  52. Theilacker C, Kaczynski Z, Kropec A, Fabretti F, Sange T, Holst O, Huebner J (2006) Opsonic antibodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid. Infect Immun 74(10):5703–5712

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bleiweis A, Krause R (1965) The cell walls of Group D Streptococci. I. The immunogenicity of the type 1 carbohydrate. J Expl Med 122(2):237–249

    CAS  Google Scholar 

  54. Hancock L, Gilmore M (2001) The capsular polysaccharide of Enterococcus faecalis and its relationship to other polysaccharides in the cell wall. PNAS 99(3):1574–1579

    Google Scholar 

  55. Hsu C, Ganong A, Reinap B, Mourelatos Z, Huebner J, Wang J (2006) Immunochemical characterization of polysaccharide antigens from six clinical strains of Enterococci. BMC Microbiol 6(62):1–9

    Google Scholar 

  56. Teng F, Singh KV, Bourgogne A, Zeng J, Murray BE (2009) Further characterization of the epa gene cluster and EPA polysaccharides of Enterococcus faecalis. Infect Immun 77(9):3759–3767

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Guerardel Y, Sadovskaya I, Maes E, Furlan S, Chapot-Charier M-P, Mesnage S, Rigottier-Gois L, Serror P (2020) Complete structure of the enterococcal polysaccharide antigen (EPA) of vancomycin-resistant Enterococcus faecalis V583 reveals that EPA decorations are teichoic acids covalently linked to a rhamnopolysaccharide backbone. Mbio 11:e00277-20. https://doi.org/10.1128/mBio.00277-20

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bleiweis A, Young F, Krause R (1967) Cell walls of Group D Streptococci. II. Chemical studies on the type 1 antigen purified from the autolytic digest of cell walls. J Bacteriol 94(5):1381–1387

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Theilacker C, Hoist O, Lindner B, Huebner J, Kaczynski Z (s2012) The Structure of the wall teichoic acid isolated from Enterococcus faecalis strain 12030. Carbohydr Res 106–109

  60. Geiss-Liebishch S, Rooijakkers SHM, Beczala A, Sanchez-Carballo P, Kruszynska K, Repp C, Sakinc T, Vinogradov E, Holst O, Huebner J (2012) Secondary cell wall polymers of Enterococcus faecalis are critical for resistance to complement activation via mannose-binding lectin. J Biol Chem 287(45):37769–37777

    Google Scholar 

  61. Ho K, Huo W, Pas S, Dao R, Palmer KL (2018) Loss-of –function mutations in epaR confer resistance to ϕNPV1 infection in Enterococcus faecalis OG1RF. Antimicrob Agents Chemother 62(10):e00758-e818. https://doi.org/10.1128/AAC.00758-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chatterjee A, Johnson CN, Luong P, Hullahalli K, McBride SW, Schubert AM, Palmer KL, Carlson PE Jr, Duerkop BA (2019) Bacteriophage resistance alters antibiotic-mediated intestinal expansion of enterococci. Infect Immun 87(6):e00085-e119

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Paulsen I, Banerjei L, Myers G, Nelson K, Seshadri R, Read T, Fouts D, Eisen J, Gill S, Heidelberg J, Tettelin H, Dodson R, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy R, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum K, Dougherty B, Fraser C (2003) Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299(5615):2071–2074

    CAS  PubMed  Google Scholar 

  64. Duerkop B, Clements C, Rollins D, Rodrigues J, Hooper L (2012) A composite bacteriophage alters colonization by an intestinal commensal bacterium. PNAS Microbiol 109(43):17621–17626

    CAS  Google Scholar 

  65. Stevens RH, Ektefaie MR, Fouts DE (2011) The annotated complete DNA sequence of Enterococcus faecalis bacteriophage ϕEf11 and its comparison with all available phage and predicted prophage genomes. FEMS Microbiol Lett 317:9–26

    CAS  PubMed  Google Scholar 

  66. Stevens RH, Porras OD, Delisle AL (2009) Bacteriophages induced from lysogenic root canal isolates of Enterococcus faecalis. Oral Microbiol Immunol 24:278–284

    CAS  PubMed  Google Scholar 

  67. Sedgley CM, Lennan SL, Clewall DB (2004) Prevalence, phenotype and genotype of oral enterococci. Oral Microbiol Immunol 19:95–101

    CAS  PubMed  Google Scholar 

  68. Johnson E, Flannagan S, Sedgley C (2006) Coaggregation interactions between oral and endodontic Enterococcus faecalis and bacterial species isolated from persistent apical periodontitis. J Endodon 32(10):946–950

    Google Scholar 

  69. Sedgley CM, Molander A, Flannagan SE, Nagel AC, Appelbe OK, Clewell DB, Dahlen G (2005) Virulence, phenotype and genotype characteristics of endodontic Enterococcus spp. Oral Microbiol Immunol 20:10–19

    CAS  PubMed  Google Scholar 

  70. Sedgley C, Buck G, Appelbe O (2006) Prevalence of Enterococcus faecalis at multiple oral sites in endodontic patients using culture and PCR. J Endodon 32(2):104–109

    Google Scholar 

  71. Dunny GM, Brown BL, Clewell DB (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci USA 75(7):3479–3483

    CAS  PubMed  Google Scholar 

  72. Sedgley CM, Nagel AC, Shelburne CDB, Appelbe O, Molander A (2005) Quantitative real-time PCR detection of oral Enterococcus faecalis in humans. Arch Oral Biol 50:575–583

    CAS  PubMed  Google Scholar 

  73. Sahm DF, Kissinger J, Gilmore MS, Murray PR, Mulder R, Solliday J, Clarke B (1989) In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 33(9):1588–1591

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shankar N, Lockatell CV, Baghdayan AS, Drachenberg C, Gilmore MS, Johnson DE (2001) Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun 69(7):4366–4372

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Johnson JR, Clabots C, Hirt H, Waters C, Dunny G (2004) Enterococcal aggregation substance and binding substance are not major contributors to urinary tract colonization by Enterococcus faecalis in a mouse model of ascending unobstructed urinary tract infection. Infect Immun 72(4):3445–3448

    Google Scholar 

  76. Jacob A, Hobbs S (1974) Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes. J Bacteriol 117(2):360–372

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work utilized NIAID’s suite of preclinical services for in vitro assessment (contract no. 75N93019D00011/75N93019F00 131). The authors are indebted to Dr. Lynn Hancock for his critical reading of our manuscript.

Funding

Supported by internal funding from Temple University Kornberg School of Dentistry.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by both authors. Manuscript was drafted by RHS Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Roy H. Stevens.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies involving human participants or animals.

Additional information

Handling Editor: Johannes Wittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 38 kb)

Supplementary file2 (PDF 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Stevens, R.H. Intrinsic resistance of Enterococcus faecalis strains to ΦEf11 phage endolysin is associated with the presence of ΦEf11 prophage. Arch Virol 166, 249–258 (2021). https://doi.org/10.1007/s00705-020-04861-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04861-7

Navigation