Skip to main content
Log in

Genome sequencing and phylogenetic reconstruction reveal a potential fourth rhinovirus species and its worldwide distribution

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Genome sequences of members of a potential fourth rhinovirus (RV) species, provisionally denoted as rhinovirus A clade D, from patients with acute respiratory infection were determined. Bayesian coalescent analysis estimated that clade D emerged around the 1940s and diverged further around 2006-2007 into two distinctive sublineages (RV-A8-like and RV-A45-like) that harbored unique “clade-defining” substitutions. Similarity plots and bootscan mapping revealed a recombination breakpoint located in the 5ʹ-UTR region of members of the RV-A8-like sublineage. Phylogenetic reconstruction revealed the distribution of clade D viruses in the Asia Pacific region and in Europe, underlining its worldwide distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Wang X, Li Y, O’Brien KL, Madhi SA, Widdowson MA, Byass P et al (2020) (2020) Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study. Lancet Glob Health 8(4):e497–e510

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stobart CC, Nosek JM, Moore ML (2017) Rhinovirus biology, antigenic diversity, and advancements in the design of a human rhinovirus vaccine. Front Microbiol. 2017(8):2412

    Article  Google Scholar 

  3. Baillie VL, Moore DP, Mathunjwa A, Morailane P, Simoes EAF, Madhi SA (2020) A prospective case-control study on the association of Rhinovirus nasopharyngeal viral load and viremia in South African children hospitalized with severe pneumonia. J Clin Virol. https://doi.org/10.1016/j.jcv.2020.104288

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ishiguro T, Yoshida Y, Kobayashi Y, Shimizu Y, Takayanagi N (2019) Primary rhinovirus pneumonia in which bronchoalveolar lavage fluid yielded human rhinovirus. Respir Med Case Rep. https://doi.org/10.1016/j.rmcr.2019.100910

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hai LT, Bich VT, Ngai LK, Diep NT, Phuc PH, Hung VP et al (2012) Fatal respiratory infections associated with rhinovirus outbreak, Vietnam. Emerg Infect Dis 2012(18):1886–1888

    Article  Google Scholar 

  6. Ljubin-Sternak S, Mestrovic T, Ivkovic-Jurekovic I, Kolaric B, Slovic A, Forcic D et al (2019) The emerging role of rhinoviruses in lower respiratory tract infections in children—clinical and molecular epidemiological study from Croatia, 2017–2019. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02737

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bergroth E, Aakula M, Elenius V, Remes S, Piippo-Savolainen E, Korppi M et al (2020) Rhinovirus type in severe bronchiolitis and the development of asthma. J Allergy Clin Immunol Pract 8(2):588–595. https://doi.org/10.1016/j.jaip.2019.08.043

    Article  PubMed  Google Scholar 

  8. Montgomery ST, Frey DL, Mall MA, Stick SM, Kicic A, Arest CF (2020) Rhinovirus infection is associated with airway epithelial cell necrosis and inflammation via interleukin-1 in young children with cystic fibrosis. Front Immunol 2020(11):596. https://doi.org/10.3389/fimmu.2020.00596

    Article  CAS  Google Scholar 

  9. Zhu J, Mallia P, Footitt J, Qiu Y, Message SD, Kebadze T et al (2020) Bronchial mucosal inflammation and illness severity in response to experimental rhinovirus infection in COPD. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2020.03.021

    Article  PubMed  PubMed Central  Google Scholar 

  10. Palmenberg AC, Spiro D, Kuzmickas R, Wang S, Djikeng A, Rathe JA et al (2009) Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 324(5923):55–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Palmenberg AC, Gern JE (2015) Classification and evolution of human rhinoviruses. Methods Mol Biol 1221:1–10. https://doi.org/10.1007/978-1-4939-1571-2_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Savolainen C, Blomqvist S, Mulders MN, Hovi T (2002) Genetic clustering of all 102 human rhinovirus prototype strains: serotype 87 is close to human enterovirus 70. J Gen Virol. 83:333–340

    Article  CAS  PubMed  Google Scholar 

  13. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. https://doi.org/10.1186/1471-2148-7-214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuroda M, Niwa S, Sekizuka T, Tsukagoshi H, Yokoyama M, Ryo A et al (2015) Molecular evolution of the VP1, VP2, and VP3 genes in human rhinovirus species C. Sci Rep 5:8185. https://doi.org/10.1038/srep08185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kass R, Raftery A (1995) Bayes factors. J Am Stat Assoc 1995(90):773–795

    Article  Google Scholar 

  17. Ng KT, Oong XY, Lim SH, Chook JB, Takebe Y, Chan YF et al (2018) Viral load and sequence analysis reveal the symptom severity, diversity, and transmission clusters of rhinovirus infections. Clin Infect Dis. 67(2):261–268. https://doi.org/10.1093/cid/ciy063

    Article  PubMed  Google Scholar 

  18. Simmonds P, McIntyre C, Savolainen-Kopra C, Tapparel C, Mackay IM, Hovi T (2010) Proposals for the classification of human rhinovirus species C into genotypically assigned types. J Gen Virol 91(Pt 10):2409–2419. https://doi.org/10.1099/vir.0.023994-0

    Article  CAS  PubMed  Google Scholar 

  19. McIntyre CL, Savolainen-Kopra C, Hovi T, Simmonds P (2013) Recombination in the evolution of human rhinovirus genomes. Arch Virol. https://doi.org/10.1007/s00705-013-1634-6

    Article  PubMed  Google Scholar 

  20. Piralla A, Baldanti F, Gerna G (2011) Phylogenetic patterns of human respiratory picornavirus species, including the newly identified group C rhinoviruses, during a 1-year surveillance of a hospitalized patient population in Italy. J Clin Microbiol 49(1):373–376. https://doi.org/10.1128/JCM.01814-10

    Article  PubMed  Google Scholar 

  21. Xiang Z, Gonzalez R, Wang Z, Xiao Y, Chen L, Li T et al (2010) Human rhinoviruses in Chinese adults with acute respiratory tract infection. J Infect. 61(4):289–298. https://doi.org/10.1016/j.jinf.2010.07.001

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Ministry of Higher Education, Malaysia: High Impact Research UM.C/625/1/HIR/MOE/CHAN/02/02 to K.K.T and Postgraduate Research Fund (PG097-2015A) to K.T.N. We would like to thank Ann C. Palmenberg (University of Wisconsin) for discussion and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kok Keng Tee.

Additional information

Handling Editor: Tim Skern.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, K.T., Takebe, Y., Kamarulzaman, A. et al. Genome sequencing and phylogenetic reconstruction reveal a potential fourth rhinovirus species and its worldwide distribution. Arch Virol 166, 225–229 (2021). https://doi.org/10.1007/s00705-020-04855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04855-5

Navigation