Skip to main content

Advertisement

Log in

Increasing detection of rotavirus G2P[4] strains in Nizhny Novgorod, Russia, between 2016 and 2019

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Rotavirus infection is one of the leading causes of acute gastroenteritis in children in their first years of life. We studied the genotypic diversity of rotavirus A (RVA) strains in Nizhny Novgorod, Russia, during the period 2016-19. In total, 4714 samples of faeces from children admitted to the Nizhny Novgorod Hospital for Infectious Diseases with acute gastroenteritis were examined. The share of rotavirus-positive samples was 31.5% in 2016-17. It decreased to 21.6% in 2018-19. In Nizhny Novgorod, all six global types of RVA were detected (G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and G12P[8]), as well as sporadic samples with genotypes G9P[4], G3P[9], G9P[9], G8P[8], G2P[8], G4P[4], G3P[9]. The fraction of strains with genotype G2P[4] gradually increased from 5.9% in 2016-17 to 39.1% in 2018-19. Simultaneously, the proportion of G9P[8] strains decreased from 63.2% to 27.7% in the same period. Phylogenetic analysis showed that rotaviruses with the G2P[4] genotype carried ubiquitous alleles of the VP7 and VP4 genes during the period of their prevalence: G2-IVa-1 and G2-IVa-3; P[4]-IVa and P[4]-IVb. As rotavirus vaccination is not widely used in the region because it is not included in the national vaccination calendar in Russia so far, the increase in the number of G2P[4] RVA is likely due to natural strain fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Peck M, Gacic-Dobo M, Diallo MS, Nedelec Y, Sodha SS, Wallace AS (2019) Global routine vaccination coverage, 2018. MMWR Morb Mortal Wkly Rep 68:937–942. https://doi.org/10.15585/mmwr.mm6842a1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ward RL, Bernstein DI (2009) Rotarix: a rotavirus vaccine for the world. Clin Infect Dis 48:222–228

    Article  PubMed  Google Scholar 

  3. Ciarlet M, Schödel F (2009) Development of a rotavirus vaccine: clinical safety, immunogenicity, and efficacy of the pentavalent rotavirus vaccine, RotaTeq. Vaccine 27(Suppl 6):G72-81

    Article  CAS  PubMed  Google Scholar 

  4. Desselberger U, Huppertz HI (2011) Immune responses to rotavirus infection and vaccination and associated correlates of protection. J Infect Dis 203:188–195. https://doi.org/10.1093/infdis/jiq031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chandola TR, Taneja S, Goyal N, Antony K, Bhatia K, More D, Bhandari N, Cho I, Mohan K, Prasad S, Harshavardhan G, Rao TS, Vrati S, Bhan MK (2017) ROTAVAC® does not interfere with the immune response to childhood vaccines in Indian infants: a randomized placebo controlled trial. Heliyon 3(5):e00302. https://doi.org/10.1016/j.heliyon.2017.e00302

    Article  PubMed  PubMed Central  Google Scholar 

  6. Naik SP, Zade JK, Sabale RN, Pisal SS, Menon R, Bankar SG, Gairola S, Dhere RM (2017) Stability of heat stable, live attenuated rotavirus vaccine (Rotasiil®). Vaccine 35(22):2962–2969. https://doi.org/10.1016/j.vaccine.2017.04.025

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Zhang Y, Yang Y, Liang Z, Tian Y, Liu B, Gao Z, Jia L, Chen L, Wang Q (2019) Effectiveness of Lanzhou lamb rotavirus vaccine in preventing gastroenteritis among children younger than 5 years of age. Vaccine 37(27):3611–3616. https://doi.org/10.1016/j.vaccine.2019.03.069

    Article  PubMed  Google Scholar 

  8. Dang DA, Nguyen VT, Vu DT, Nguyen TH, Nguyen DM, Yuhuan W, Baoming J, Nguyen DH, Le TL, Group R-MVT (2012) A dose-escalation safety and immunogenicity study of a new live attenuated human rotavirus vaccine (Rotavin-M1) in Vietnamese children. Vaccine 27(30 Suppl 1):A114–A121. https://doi.org/10.1016/j.vaccine.2011.07.11810.1016/j.vaccine.2011.07.118

    Article  Google Scholar 

  9. Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Bányai K, Estes MK, Gentsch JR, Iturriza-Gómara M, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Patton JT, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Desselberger U, Van Ranst M (2008) Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol 153(8):1621–1629. https://doi.org/10.1007/s00705-008-0155-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matthijnssens J, Van Ranst M (2012) Genotype constellation and evolution of group A rotaviruses infecting humans. Curr Opin Virol 2(4):426–433. https://doi.org/10.1016/j.coviro.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  11. Bányai K, László B, Duque J, Steele AD, Nelson EA, Gentsch JR, Parashar UD (2012) Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: insights for understanding the impact of rotavirus vaccination programs. Vaccine 27(30 Suppl 1):A122–A130. https://doi.org/10.1016/j.vaccine.2011.09.111

    Article  Google Scholar 

  12. Iturriza-Gomara M, Dallman T, Banyai K, Bottiger B, Buesa J, Diedrich S, Fiore L, Johansen K, Koopmans M, Korsun N, Koukou D, Kroneman A, Laszlo B, Lappalainen M, Maunula L, Marques AM, Matthijnssens J, Midgley S, Mladenova Z, Nawaz S, Poljsak-Prijatelj M, Pothier P, Ruggeri FM, Sanchez-Fauquier A, Steyer A, Sidaraviciute-Ivaskeviciene I, Syriopoulou V, Tran AN, Usonis V, van Ranst M, de Rougemont A, Gray J (2011) Rotavirus genotypes co-circulating in Europe between 2006 and 2009 as determined by EuroRotaNet, a pan-European collaborative strain surveillance network. Epidemiol Infect 139(6):895–909. https://doi.org/10.1017/S0950268810001810

    Article  CAS  PubMed  Google Scholar 

  13. Payne DC, Staat MA, Edwards KM, Szilagyi PG, Weinberg GA, Hall CB, Chappell J, Curns AT, Wikswo M, Tate JE, Lopman BA, Parashar UD, NVSN, (2011) Direct and indirect effects of rotavirus vaccination upon childhood hospitalizations in 3 US counties, 2006–2009. Clin Infect Dis 53(3):245–253. https://doi.org/10.1093/cid/cir307

    Article  CAS  PubMed  Google Scholar 

  14. Dong HJ, Qian Y, Zhang Y, Zhao LQ, Zhu RN, Nong Y, Mo ZJ, Li RC (2016) G2 rotavirus within an emergent VP7 evolutionary lineage circulating in children with acute diarrhea in Guangxi province of China, 2014. Arch Virol 161(7):1987–1992. https://doi.org/10.1007/s00705-016-2852-5

    Article  CAS  PubMed  Google Scholar 

  15. Esteban LE, Rota RP, Gentsch JR, Jiang B, Esona M, Glass RI, Glikmann G, Castello AA (2010) Molecular epidemiology of group A rotavirus in Buenos Aires, Argentina 2004–2007: reemergence of G2P[4] and emergence of G9P[8] strains. J Med Virol 82(6):1083–1093. https://doi.org/10.1002/jmv.21745

    Article  CAS  PubMed  Google Scholar 

  16. Matthijnssens J, Zeller M, Heylen E, De Coster S, Vercauteren J, Braeckman T, Van Herck K, Meyer N, Pirçon J-Y, Soriano-Gabarro M, Azou M, Capiau H, De Koster J, Maernoudt A-S, Raes M, Verdonck L, Verghote M, Vergison A, Van Damme P, Van RanstRotaBel study group M (2014) Higher proportion of G2P[4] rotaviruses in vaccinated hospitalized cases compared with unvaccinated hospitalized cases, despite high vaccine effectiveness against heterotypic G2P[4] rotaviruses. Clin Microbiol Infect 20(10):O702–O710. https://doi.org/10.1111/1469-0691.12612

    Article  CAS  PubMed  Google Scholar 

  17. Nakagomi T, Cuevas LE, Gurgel RG, Elrokhsi SH, Belkhir YA, Abugalia M, Dove W, Montenegro FMU, Correia JB, Nakagomi O, Cunliffe NA, Hart CA (2008) Apparent extinction of non-G2 rotavirus strains from circulation in Recife, Brazil, after the introduction of rotavirus vaccine. Arch Virol 153(3):591–593. https://doi.org/10.1007/s00705-007-0028-z

    Article  CAS  PubMed  Google Scholar 

  18. Thanh HD, Tran VT, Lim I, Kim W (2018a) Emergence of human G2P[4] rotaviruses in the post-vaccination era in South Korea: footprints of multiple interspecies re-assortment events. Sci Rep 8(1):6011. https://doi.org/10.1038/s41598-018-24511-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vizzi E, Piñeros OA, Oropeza MD, Naranjo L, Suárez JA, Fernández R, Zambrano JL, Celis A, Liprandi F (2017) Human rotavirus strains circulating in Venezuela after vaccine introduction: predominance of G2P[4] and reemergence of G1P[8]. Virol J 14(1):58. https://doi.org/10.1186/s12985-017-0721-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herring AJ, Inglis NF, Ojeh CK, Snodgrass DR, Menzies JD (1982) Rapid diagnosis of rotavirus infection by direct detection of viral nucleic-acid in silver-stained polyacrylamide gels. J Clin Microbiol 16:473–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  22. Gentsch JR, Glass RI, Woods P, Gouvea V, Gorziglia M, Flores J, Das BK, Bhan MK (1992) Identification of group A rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol 30:1365–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gouvea V, Glass RI, Woods P, Taniguchi K, Clark HF, Forrester B, Fang ZY (1990) Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J Clin Microbiol 28:276–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iturriza-Gómara M, Isherwood B, Desselberger U, Gray J (2001) Reassortment in vivo: driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999. J Virol 75:3696–3705

    Article  PubMed  PubMed Central  Google Scholar 

  25. Iturriza-Gómara M, Kang G, Gray J (2004) Rotavirus genotyping: keeping up with an evolving population of human rotaviruses. J Clin Virol 31(4):259–265. https://doi.org/10.1016/j.jcv.2004.04.009

    Article  CAS  PubMed  Google Scholar 

  26. Novikova NA, Sashina TA, Epifanova NV, Kashnikov AU, Morozova OV (2020) Long-term monitoring of G1P[8] rotaviruses circulating without vaccine pressure in Nizhny Novgorod, Russia, 1984–2019. Arch Virol 165(4):865–875. https://doi.org/10.1007/s00705-020-04553-2

    Article  CAS  PubMed  Google Scholar 

  27. Maunula L, von Bonsdorff CH (1998) Short sequences define genetic lineages: phylogenetic analysis of group A rotaviruses based on partial sequences of genome segments 4 and 9. J Gen Virol 79(Pt 2):321–332

    Article  CAS  PubMed  Google Scholar 

  28. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) Mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) Beast 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10(4):e1003537. https://doi.org/10.1371/journal.pcbi.1003537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giammanco GM, Bonura F, Zeller M, Heylen E, Van Ranst M, Martella V, Bányai K, Matthijnssens J, De Grazia S (2014) Evolution of DS-1-like human G2P[4] rotaviruses assessed by complete genome analyses. J Gen Virol 95(Pt 1):91–109. https://doi.org/10.1099/vir.0.056788-0

    Article  CAS  PubMed  Google Scholar 

  31. Doan YH, Nakagomi T, Cunliffe NA, Pandey BD, Sherchand JB, Nakagomi O (2011) The occurrence of amino acid substitutions D96N and S242N in VP7 of emergent G2P[4] rotaviruses in Nepal in 2004–2005: a global and evolutionary perspective. Arch Virol 156(11):1969–1978. https://doi.org/10.1007/s00705-011-1083-z

    Article  CAS  PubMed  Google Scholar 

  32. Doan YH, Nakagomi T, Nakagomi O (2012) Repeated circulation over 6 years of intergenogroup mono-reassortant G2P[4] rotavirus strains with genotype N1 of the NSP2 gene. Infect Genet Evol 12(6):1202–1212. https://doi.org/10.1016/j.meegid.2012.04.023

    Article  PubMed  Google Scholar 

  33. Epifanova NV, Sashina TA, Khokhlova NM, Kashnikov AY, Novikova NA (2016) Acute intestinal infections of viral etiology according to long-term surveillance on territory of Nizhny Novgorod. Med Alph 1:30–34 ((in Russian))

    Google Scholar 

  34. Kharit SM, Bekhtereva MK, Lobzin JV, Rudakova AV, Podkolzin AT, Tikunova NV (2017) The burden of rotavirus gastroenteritis, as rationale for routine vaccination. Med Counc 1:73–78 ((in Russian))

    Google Scholar 

  35. Lobzin YV, Kharit SM, Goveia MG, O’Brian MA, Podkolzin AT, Blokhin BM, Bekhtereva MK, Rudakova AV, Tikunova NV (2017) Burden of childhood rotavirus disease in the outpatient setting of the Russian Federation. Pediatr Infect Dis J 36(5):472–476. https://doi.org/10.1097/INF.0000000000001472

    Article  PubMed  Google Scholar 

  36. Morozova OV, Sashina TA, Epifanova NV, Zverev VV, Kashnikov AU, Novikova NA (2018) Phylogenetic comparison of the VP7, VP4, VP6, and NSP4 genes of rotaviruses isolated from children in Nizhny Novgorod, Russia, 2015–2016, with cogent genes of the Rotarix® and RotaTeq® vaccine strains. Virus Genes 54(2):225–235. https://doi.org/10.1007/s11262-017-1529-9

    Article  CAS  PubMed  Google Scholar 

  37. Kostinov MP, Kostinov AM (2018) The vaccine against rotavirus infection as one of the candidates for the inclusion in Russian national vaccination schedule. Infect Dis News Opin Train 7:78–83 ((in Russian))

    Google Scholar 

  38. Novikova NA, Epifanova NV, Altova EE, Dushkin VN, Pudova KV, Medvedev KL (1992) Electrofhoretic typing of rotavirus in the clinico-epidemiological study of infection. J Microbiol Epidemiol Immunobiol 69:31–34 ((in Russian))

    Google Scholar 

  39. Agbemabiese CA, Nakagomi T, Doan YH, Do LP, Damanka S, Armah GE, Nakagomi O (2016) Genomic constellation and evolution of Ghanaian G2P[4] rotavirus strains from a global perspective. Infect Genet Evol 45:122–131. https://doi.org/10.1016/j.meegid.2016.08.024

    Article  PubMed  Google Scholar 

  40. Andersson M, Lindh M (2017) Rotavirus genotype shifts among Swedish children and adults-application of a real-time PCR genotyping. J Clin Virol 96:1–6. https://doi.org/10.1016/j.jcv.2017.09.005

    Article  PubMed  Google Scholar 

  41. Dennis AF, McDonald SM, Payne DC, Mijatovic-Rustempasic S, Esona MD, Edwards KM, Chappell JD, Patton JT (2014) Molecular epidemiology of contemporary G2P[4] human rotaviruses cocirculating in a single U.S. community: footprints of a globally transitioning genotype. J Virol 88(7):3789–3801. https://doi.org/10.1128/JVI.03516-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Do LP, Doan YH, Nakagomi T, Gauchan P, Kaneko M, Agbemabiese CA, Dang AD, Nakagomi O (2015) Whole genome analysis of Vietnamese G2P[4] rotavirus strains possessing the NSP2 gene sharing an ancestral sequence with Chinese sheep and goat rotavirus strains. Microbiol Immunol 59(10):605–613. https://doi.org/10.1111/1348-0421.123234

    Article  CAS  PubMed  Google Scholar 

  43. Thanh HD, Tran VT, Lim I, Kim W (2018b) Emergence of human G2P[4] rotaviruses in the post-vaccination era in South Korea: footprints of multiple interspecies re-assortment events. Sci Rep. https://doi.org/10.1038/s41598-018-24511-y

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Zhang J, Liu P (2017) Clinical and molecular epidemiologic trends reveal the important role of rotavirus in adult infectious gastroenteritis, in Shanghai, China. Infect Genet Evol 47:143–154. https://doi.org/10.1016/j.meegid.2016.11.018

    Article  PubMed  Google Scholar 

  45. Kim J-S, Kim HS, Hyun J, Kim H-S, Song W, Lee KM, Shin S-H (2014) Analysis of rotavirus genotypes in Korea during 2013: an increase in the G2P[4] genotype after the introduction of rotavirus vaccines. Vaccine 32(48):6396–6402. https://doi.org/10.1016/j.vaccine.2014.09.067

    Article  CAS  PubMed  Google Scholar 

  46. Luchs A, Cilli A, Morillo SG, Compagnoli Carmona RdC, Sampaio Tavares Timenetsky MdC (2015) Rotavirus genotypes circulating in Brazil, 2007–2012: implications for the vaccine program. Rev Inst Med Trop Sao Paulo 57(4):305–313. https://doi.org/10.1590/S0036-46652015000400006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mukhopadhya I, Murdoch H, Berry S, Hunt A, Iturriza-Gomara M, Smith-Palmer A, Cameron JC, Hold GL (2017) Changing molecular epidemiology of rotavirus infection after introduction of monovalent rotavirus vaccination in Scotland. Vaccine 35(1):156–163. https://doi.org/10.1016/j.vaccine.2016.11.028

    Article  PubMed  Google Scholar 

  48. Zeller M, Rahman M, Heylen E, De Coster S, De Vos S, Arijs I, Novo L, Verstappen N, Van Ransta M, Matthijnssens J (2010) Rotavirus incidence and genotype distribution before and after national rotavirus vaccine introduction in Belgium. Vaccine 28(47):7507–7513. https://doi.org/10.1016/j.vaccine.2010.09.004

    Article  PubMed  Google Scholar 

  49. Roczo-Farkas S, Cowley D, Bines JE, Group tARS (2019) Australian rotavirus surveillance program: annual report, 2017. Commun Dis Intell 16:43. https://doi.org/10.33321/cdi.2019.43.28

    Article  Google Scholar 

  50. Sashina TA, Morozova OV, Epifanova NV, Novikova NA (2017) Predominance of new G9P[8] rotaviruses closely related to Turkish strains in Nizhny Novgorod (Russia). Arch Virol 162(8):2387–2392. https://doi.org/10.1007/s00705-017-3364-7

    Article  CAS  PubMed  Google Scholar 

  51. Plosker GL (2010) Pentavalent rotavirus vaccine (RotaTeq): a review of its use in the prevention of rotavirus gastroenteritis in Europe. Drugs 70(9):1165–1188. https://doi.org/10.2165/11205030-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  52. Justino MC, Araújo EC, van Doorn LJ, Oliveira CS, Gabbay YB, Mascarenhas JD, Miranda YS, Guerra S, Silva VB, Linhares AC (2012) Oral live attenuated human rotavirus vaccine (RotarixTM) offers sustained high protection against severe G9P[8] rotavirus gastroenteritis during the first two years of life in Brazilian children. Mem Inst Oswaldo Cruz 107(7):846–853. https://doi.org/10.1590/s0074-02762012000700002

    Article  CAS  PubMed  Google Scholar 

  53. Quintero-Ochoa G, Romero-Argüelles R, Aviles-Hernández A, Cejudo-Flores M, Calleja-García P, Domínguez-Gámez M, Cantú-Bernal S, Icedo-García R, Soñanez-Organis J, Rosas-Rodríguez J, Romo-Saenz C, Tamez-Guerra P, Flores-Mendoza L, González-Ochoa G (2019) Viral agents of gastroenteritis and their correlation with clinical symptoms in rotavirus-vaccinated children. Infect Genet Evol 73:190–196. https://doi.org/10.1016/j.meegid.2019.05.002

    Article  PubMed  Google Scholar 

  54. My PVT, Rabaa MA, Vinh H, Holmes EC, Hoang NV, Vinh NT, Phuong LT, Tham NT, Bay PV, Campbell JI, Farrar J, Baker S (2011) The emergence of rotavirus G12 and the prevalence of enteric viruses in hospitalized pediatric diarrheal patients in Southern Vietnam. Am J Trop Med Hyg 85(4):768–775. https://doi.org/10.4269/ajtmh.2011.11-0364

    Article  Google Scholar 

  55. Ianiro G, Micolano R, Di Bartolo I, Scavia G, Monini M, Pagani E, Moroder L, Aschbacher R, Binda S, Pellegrinelli L, Farina C, Mignacca A, Bruno R, Vuolo A, Peyronel E, Contarini MN, Zanella F, Bordignon G, Zoppelletto M, Affanni P, Lazzarotto T, Chiereghin A, Recanatini C, D’Errico M, Camilloni B, Concato C, Onori M, Valentini D, Campagnuolo R, Mungiguerra M, Chironna M, Morea A, Labianca M, Castiglia P, RotaNet-Italy Study G (2017) Group A rotavirus surveillance before vaccine introduction in Italy, September 2014 to August 2017. Eurosurveillance 24(15):1800418. https://doi.org/10.2807/1560-7917.ES.2019.24.15.1800418

    Article  Google Scholar 

  56. Markkula J, Hemming-Harlo M, Savolainen-Kopra C, Al-Hello H, Vesikari T (2020) Continuing rotavirus circulation in children and adults despite high coverage rotavirus vaccination in Finland. J Infect 80(1):76–83

    Article  CAS  PubMed  Google Scholar 

  57. Guerra SFS, Fecury PCMS, Bezerra DAM, Lobo PS, Penha Júnior ET, Sousa Júnior EC, Mascarenhas JDP, Soares LS, Justino MCA, Linhares AC (2019) Emergence of G12P[6] rotavirus strains among hospitalised children with acute gastroenteritis in Belém, Northern Brazil, following introduction of a rotavirus vaccine. Arch Virol 164(8):2107–2117. https://doi.org/10.1007/s00705-019-04295-w

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sergei Gutnikov of Oxford Progress Ltd (Oxford, UK) for his valuable suggestions on stylistic improvements of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

OM and TS conceived and designed the experiments. NE, AK, OM and TS performed the experiments. OM analyzed the data. OM and NN wrote the manuscript. TS and NE participated in revising the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Olga V. Morozova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethical Committee of the I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing.

Additional information

Handling Editor: Reimar Johne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, O.V., Sashina, T.A., Epifanova, N.V. et al. Increasing detection of rotavirus G2P[4] strains in Nizhny Novgorod, Russia, between 2016 and 2019. Arch Virol 166, 115–124 (2021). https://doi.org/10.1007/s00705-020-04853-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04853-7

Navigation